An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

Author Hossein Jowhari



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2021.10.pdf
  • Filesize: 0.68 MB
  • 13 pages

Document Identifiers

Author Details

Hossein Jowhari
  • Department of Computer Science and Statistics, Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

Cite As Get BibTex

Hossein Jowhari. An Estimator for Matching Size in Low Arboricity Graphs with Two Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.10

Abstract

In this paper, we present a new degree-based estimator for the size of maximum matching in bounded arboricity graphs. When the arboricity of the graph is bounded by α, the estimator gives a α+2 factor approximation of the matching size. For planar graphs, we show the estimator does better and returns a 3.5 approximation of the matching size. Using this estimator, we get new results for approximating the matching size of planar graphs in the streaming and distributed models of computation. In particular, in the vertex-arrival streams, we get a randomized O((√n)/(ε²)log n) space algorithm for approximating the matching size of a planar graph on n vertices within (3.5+ε) factor. Similarly, we get a simultaneous protocol in the vertex-partition model for approximating the matching size within (3.5+ε) factor using O((n^{2/3})/(ε²)log n) communication from each player. In comparison with the previous estimators, the estimator in this paper does not need to know the arboricity of the input graph and improves the approximation factor in the case of planar graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Streaming, sublinear and near linear time algorithms
Keywords
  • Data Stream Algorithms
  • Maximum Matching
  • Planar Graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137-147, 1999. URL: https://doi.org/10.1006/jcss.1997.1545.
  2. Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially faster massively parallel maximal matching. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1637-1649. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.2019.00096.
  3. Aaron Bernstein. Improved bounds for matching in random-order streams. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 12:1-12:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.12.
  4. Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh, Chris Schwiegelshohn, Sofya Vorotnikova, and Samson Zhou. Structural results on matching estimation with applications to streaming. Algorithmica, 81(1):367-392, 2019. URL: https://doi.org/10.1007/s00453-018-0449-y.
  5. Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326-1344. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch92.
  6. Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1234-1251. SIAM, 2015. URL: https://doi.org/10.1137/1.9781611973730.82.
  7. Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 29:1-29:15, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.29.
  8. Andrzej Czygrinow, Michal Hanckowiak, and Edyta Szymanska. Fast distributed approximation algorithm for the maximum matching problem in bounded arboricity graphs. In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Computation, 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, volume 5878 of Lecture Notes in Computer Science, pages 668-678. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-10631-6_68.
  9. Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and beyond. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1217-1233. SIAM, 2015. URL: https://doi.org/10.1137/1.9781611973730.81.
  10. Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain, pages 608-614. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/ICDMW.2016.0092.
  11. Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC algorithms for mis, matching, and coloring on trees and beyond. In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 34:1-34:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.DISC.2020.34.
  12. Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming (2+epsilon)-approximate matching. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA, volume 69 of OASICS, pages 13:1-13:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/OASIcs.SOSA.2019.13.
  13. Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from random streams. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734-751. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.55.
  14. Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient approximation to maximum matching size from uniform edge samples. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1753-1772. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.107.
  15. Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching. J. ACM, 62(5):38:1-38:17, 2015. URL: https://doi.org/10.1145/2786753.
  16. A. McGregor and S. Vorotnikova. Planar matching in streams revisited. In Proceedings of the 19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2016. Google Scholar
  17. Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science, pages 170-181. Springer, 2005. URL: https://doi.org/10.1007/11538462_15.
  18. Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 14:1-14:4, 2018. URL: https://doi.org/10.4230/OASIcs.SOSA.2018.14.
  19. C. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc., 39(12), 1964. Google Scholar
  20. Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37-57, 1985. URL: https://doi.org/10.1145/3147.3165.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail