LIPIcs.TQC.2023.3.pdf
- Filesize: 0.86 MB
- 24 pages
We analyze the complexity of learning n-qubit quantum phase states. A degree-d phase state is defined as a superposition of all 2ⁿ basis vectors x with amplitudes proportional to (-1)^{f(x)}, where f is a degree-d Boolean polynomial over n variables. We show that the sample complexity of learning an unknown degree-d phase state is Θ(n^d) if we allow separable measurements and Θ(n^{d-1}) if we allow entangled measurements. Our learning algorithm based on separable measurements has runtime poly(n) (for constant d) and is well-suited for near-term demonstrations as it requires only single-qubit measurements in the Pauli X and Z bases. We show similar bounds on the sample complexity for learning generalized phase states with complex-valued amplitudes. We further consider learning phase states when f has sparsity-s, degree-d in its 𝔽₂ representation (with sample complexity O(2^d sn)), f has Fourier-degree-t (with sample complexity O(2^{2t})), and learning quadratic phase states with ε-global depolarizing noise (with sample complexity O(n^{1+ε})). These learning algorithms give us a procedure to learn the diagonal unitaries of the Clifford hierarchy and IQP circuits.
Feedback for Dagstuhl Publishing