LIPIcs.SAT.2023.14.pdf
- Filesize: 0.69 MB
- 18 pages
To test a graph’s planarity in SAT-based graph generation we develop SAT encodings with dynamic symmetry breaking as facilitated in the SAT modulo Symmetry (SMS) framework. We implement and compare encodings based on three planarity criteria. In particular, we consider two eager encodings utilizing order-based and universal-set-based planarity criteria, and a lazy encoding based on Kuratowski’s theorem. The performance and scalability of these encodings are compared on two prominent problems from combinatorics: the computation of planar Turán numbers and the Earth-Moon problem. We further showcase the power of SMS equipped with a planarity encoding by verifying and extending several integer sequences from the Online Encyclopedia of Integer Sequences (OEIS) related to planar graph enumeration. Furthermore, we extend the SMS framework to directed graphs which might be of independent interest.
Feedback for Dagstuhl Publishing