Search Results

Documents authored by Abd-Elhaleem, Yaseen


Document
Brief Announcement
Brief Announcement: Distributed Maximum Flow in Planar Graphs

Authors: Yaseen Abd-Elhaleem, Michal Dory, Merav Parter, and Oren Weimann

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
The dual of a planar graph G is a planar graph G^* that has a vertex for each face of G and an edge for each pair of adjacent faces of G. The profound relationship between a planar graph and its dual has been the algorithmic basis for solving numerous (centralized) classical problems on planar graphs involving distances, flows, and cuts. In the distributed setting however, the only use of planar duality is for finding a recursive decomposition of G [DISC 2017, STOC 2019]. In this paper, we extend the distributed algorithmic toolkit (such as recursive decompositions and minor-aggregations) to work on the dual graph G^*. These tools can then facilitate various algorithms on G by solving a suitable dual problem on G^*. Given a directed planar graph G with hop-diameter D, our key result is an Õ(D²)-round algorithm for Single Source Shortest Paths on G^*, which then implies an Õ(D²)-round algorithm for Maximum st-Flow on G. Prior to our work, no Õ(Poly(D))-round algorithm was known for Maximum st-Flow. We further obtain a D⋅ n^o(1)-rounds (1+ε)-approximation algorithm for Maximum st-Flow on G when G is undirected and s and t lie on the same face. Finally, we give a near optimal Õ(D)-round algorithm for computing the weighted girth of G. The main challenges in our work are that G^* is not the communication graph (e.g., a vertex of G is mapped to multiple vertices of G^*), and that the diameter of G^* can be much larger than D (i.e., possibly by a linear factor). We overcome these challenges by carefully defining and maintaining subgraphs of the dual graph G^* while applying the recursive decomposition on the primal graph G. The main technical difficulty, is that along the recursive decomposition, a face of G gets shattered into (disconnected) components yet we still need to treat it as a dual node.

Cite as

Yaseen Abd-Elhaleem, Michal Dory, Merav Parter, and Oren Weimann. Brief Announcement: Distributed Maximum Flow in Planar Graphs. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 40:1-40:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abdelhaleem_et_al:LIPIcs.DISC.2024.40,
  author =	{Abd-Elhaleem, Yaseen and Dory, Michal and Parter, Merav and Weimann, Oren},
  title =	{{Brief Announcement: Distributed Maximum Flow in Planar Graphs}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{40:1--40:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.40},
  URN =		{urn:nbn:de:0030-drops-212687},
  doi =		{10.4230/LIPIcs.DISC.2024.40},
  annote =	{Keywords: Maximum flow, shortest paths, planar graphs, distributed computing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail