Search Results

Documents authored by Aloupis, Greg


Document
An Improved Bound for Plane Covering Paths

Authors: Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A covering path for a finite set P of points in the plane is a polygonal path such that every point of P lies on a segment of the path. The vertices of the path need not be at points of P. A covering path is plane if its segments do not cross each other. Let π(n) be the minimum number such that every set of n points in the plane admits a plane covering path with at most π(n) segments. We prove that π(n) ≤ ⌈6n/7⌉. This improves the previous best-known upper bound of ⌈21n/22⌉, due to Biniaz (SoCG 2023). Our proof is constructive and yields a simple O(n log n)-time algorithm for computing a plane covering path.

Cite as

Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous. An Improved Bound for Plane Covering Paths. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 75:1-75:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.75,
  author =	{A. Akitaya, Hugo and Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Gavoille, Cyril and Iacono, John and Kleist, Linda and Smid, Michiel and Souvaine, Diane and Theocharous, Leonidas},
  title =	{{An Improved Bound for Plane Covering Paths}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{75:1--75:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.75},
  URN =		{urn:nbn:de:0030-drops-245432},
  doi =		{10.4230/LIPIcs.ESA.2025.75},
  annote =	{Keywords: Covering Path, Upper Bound, Simple Algorithm}
}
Document
Noncrossing Longest Paths and Cycles

Authors: Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, and Pavel Valtr

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.

Cite as

Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, and Pavel Valtr. Noncrossing Longest Paths and Cycles. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aloupis_et_al:LIPIcs.GD.2024.36,
  author =	{Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Eppstein, David and Maheshwari, Anil and Odak, Saeed and Smid, Michiel and T\'{o}th, Csaba D. and Valtr, Pavel},
  title =	{{Noncrossing Longest Paths and Cycles}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.36},
  URN =		{urn:nbn:de:0030-drops-213203},
  doi =		{10.4230/LIPIcs.GD.2024.36},
  annote =	{Keywords: Longest Paths, Longest Cycles, Noncrossing Paths, Noncrossing Cycles}
}
Document
Recognizing Weakly Simple Polygons

Authors: Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba Tóth

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
We present an O(n log n)-time algorithm that determines whether a given planar n-gon is weakly simple. This improves upon an O(n^2 log n)-time algorithm by [Chang, Erickson, and Xu, SODA, 2015]. Weakly simple polygons are required as input for several geometric algorithms. As such, how to recognize simple or weakly simple polygons is a fundamental question.

Cite as

Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba Tóth. Recognizing Weakly Simple Polygons. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.SoCG.2016.8,
  author =	{Akitaya, Hugo A. and Aloupis, Greg and Erickson, Jeff and T\'{o}th, Csaba},
  title =	{{Recognizing Weakly Simple Polygons}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.8},
  URN =		{urn:nbn:de:0030-drops-59003},
  doi =		{10.4230/LIPIcs.SoCG.2016.8},
  annote =	{Keywords: weakly simple polygon, crossing}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail