Search Results

Documents authored by Berden, Senne


Document
Guided Bottom-Up Interactive Constraint Acquisition

Authors: Dimosthenis C. Tsouros, Senne Berden, and Tias Guns

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
Constraint Acquisition (CA) systems can be used to assist in the modeling of constraint satisfaction problems. In (inter)active CA, the system is given a set of candidate constraints and posts queries to the user with the goal of finding the right constraints among the candidates. Current interactive CA algorithms suffer from at least two major bottlenecks. First, in order to converge, they require a large number of queries to be asked to the user. Second, they cannot handle large sets of candidate constraints, since these lead to large waiting times for the user. For this reason, the user must have fairly precise knowledge about what constraints the system should consider. In this paper, we alleviate these bottlenecks by presenting two novel methods that improve the efficiency of CA. First, we introduce a bottom-up approach named GrowAcq that reduces the maximum waiting time for the user and allows the system to handle much larger sets of candidate constraints. It also reduces the total number of queries for problems in which the target constraint network is not sparse. Second, we propose a probability-based method to guide query generation and show that it can significantly reduce the number of queries required to converge. We also propose a new technique that allows the use of openly accessible CP solvers in query generation, removing the dependency of existing methods on less well-maintained custom solvers that are not publicly available. Experimental results show that our proposed methods outperform state-of-the-art CA methods, reducing the number of queries by up to 60%. Our methods work well even in cases where the set of candidate constraints is 50 times larger than the ones commonly used in the literature.

Cite as

Dimosthenis C. Tsouros, Senne Berden, and Tias Guns. Guided Bottom-Up Interactive Constraint Acquisition. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{tsouros_et_al:LIPIcs.CP.2023.36,
  author =	{Tsouros, Dimosthenis C. and Berden, Senne and Guns, Tias},
  title =	{{Guided Bottom-Up Interactive Constraint Acquisition}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.36},
  URN =		{urn:nbn:de:0030-drops-190734},
  doi =		{10.4230/LIPIcs.CP.2023.36},
  annote =	{Keywords: Constraint acquisition, Constraint learning, Active learning, Modelling}
}
Document
Learning MAX-SAT Models from Examples Using Genetic Algorithms and Knowledge Compilation

Authors: Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
Many real-world problems can be effectively solved by means of combinatorial optimization. However, appropriate models to give to a solver are not always available, and sometimes must be learned from historical data. Although some research has been done in this area, the task of learning (weighted partial) MAX-SAT models has not received much attention thus far, even though such models can be used in many real-world applications. Furthermore, most existing work is limited to learning models from non-contextual data, where instances are labeled as solutions and non-solutions, but without any specification of the contexts in which those labels apply. A recent approach named hassle-sls has addressed these limitations: it can jointly learn hard constraints and weighted soft constraints from labeled contextual examples. However, it is hindered by long runtimes, as evaluating even a single candidate MAX-SAT model requires solving as many models as there are contexts in the training data, which quickly becomes highly expensive when the size of the model increases. In this work, we address these runtime issues. To this end, we make two contributions. First, we propose a faster model evaluation procedure that makes use of knowledge compilation. Second, we propose a genetic algorithm named hassle-gen that decreases the number of evaluations needed to find good models. We experimentally show that both contributions improve on the state of the art by speeding up learning, which in turn allows higher-quality MAX-SAT models to be found within a given learning time budget.

Cite as

Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns. Learning MAX-SAT Models from Examples Using Genetic Algorithms and Knowledge Compilation. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{berden_et_al:LIPIcs.CP.2022.8,
  author =	{Berden, Senne and Kumar, Mohit and Kolb, Samuel and Guns, Tias},
  title =	{{Learning MAX-SAT Models from Examples Using Genetic Algorithms and Knowledge Compilation}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.8},
  URN =		{urn:nbn:de:0030-drops-166373},
  doi =		{10.4230/LIPIcs.CP.2022.8},
  annote =	{Keywords: Machine learning, constraint learning, MAX-SAT}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail