Search Results

Documents authored by Bhattacharjee, Somnath


Document
Track A: Algorithms, Complexity and Games
Exponential Lower Bounds via Exponential Sums

Authors: Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-size algebraic circuits. We show that the famous Shub-Smale τ-conjecture indeed implies such an exponential lower bound for an exponential sum. Our main tools come from parameterized complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound for the parameterized algebraic complexity class VW⁰_{nb}[𝖯], assuming the same conjecture. VW⁰_{nb}[𝖯] can be thought of as the weighted sums of (unbounded-degree) circuits, where only ± 1 constants are cost-free. To the best of our knowledge, this is the first time the Shub-Smale τ-conjecture has been applied to prove explicit exponential lower bounds. Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential sums is fpt, then integers, as well as polynomials with coefficients being definable in the linear counting hierarchy have subpolynomial τ-complexity. Finally, we characterize a related class VW[𝖥], in terms of permanents, where we consider an exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle covers that have one long cycle and all other cycles have constant length, then the resulting family of polynomials is complete for VW[𝖥] on certain types of graphs.

Cite as

Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee. Exponential Lower Bounds via Exponential Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharjee_et_al:LIPIcs.ICALP.2024.24,
  author =	{Bhattacharjee, Somnath and Bl\"{a}ser, Markus and Dutta, Pranjal and Mukherjee, Saswata},
  title =	{{Exponential Lower Bounds via Exponential Sums}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.24},
  URN =		{urn:nbn:de:0030-drops-201677},
  doi =		{10.4230/LIPIcs.ICALP.2024.24},
  annote =	{Keywords: Algebraic complexity, parameterized complexity, exponential sums, counting hierarchy, tau conjecture}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail