# Search Results

### Documents authored by Bhrushundi, Abhishek

Document
RANDOM
##### On Multilinear Forms: Bias, Correlation, and Tensor Rank

Authors: Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, and Mrinal Kumar

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)

##### Abstract
In this work, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over F₂. We show the following results for multilinear forms and tensors. Correlation bounds. We show that a random d-linear form has exponentially low correlation with low-degree polynomials. More precisely, for d = 2^{o(k)}, we show that a random d-linear form f(X₁,X₂, … , X_d) : (F₂^{k}) ^d → F₂ has correlation 2^{-k(1-o(1))} with any polynomial of degree at most d/2 with high probability. This result is proved by giving near-optimal bounds on the bias of a random d-linear form, which is in turn proved by giving near-optimal bounds on the probability that a sum of t random d-dimensional rank-1 tensors is identically zero. Tensor rank vs Bias. We show that if a 3-dimensional tensor has small rank then its bias, when viewed as a 3-linear form, is large. More precisely, given any 3-dimensional tensor T: [k]³ → F₂ of rank at most t, the bias of the 3-linear form f_T(X₁, X₂, X₃) : = ∑_{(i₁, i₂, i₃) ∈ [k]³} T(i₁, i₂, i₃)⋅ X_{1,i₁}⋅ X_{2,i₂}⋅ X_{3,i₃} is at least (3/4)^t. This bias vs tensor-rank connection suggests a natural approach to proving nontrivial tensor-rank lower bounds. In particular, we use this approach to give a new proof that the finite field multiplication tensor has tensor rank at least 3.52 k, which is the best known rank lower bound for any explicit tensor in three dimensions over F₂. Moreover, this relation between bias and tensor rank holds for d-dimensional tensors for any fixed d.

##### Cite as

Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, and Mrinal Kumar. On Multilinear Forms: Bias, Correlation, and Tensor Rank. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 29:1-29:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

@InProceedings{bhrushundi_et_al:LIPIcs.APPROX/RANDOM.2020.29,
author =	{Bhrushundi, Abhishek and Harsha, Prahladh and Hatami, Pooya and Kopparty, Swastik and Kumar, Mrinal},
title =	{{On Multilinear Forms: Bias, Correlation, and Tensor Rank}},
booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
pages =	{29:1--29:23},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-164-1},
ISSN =	{1868-8969},
year =	{2020},
volume =	{176},
editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.29},
URN =		{urn:nbn:de:0030-drops-126325},
doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.29},
annote =	{Keywords: polynomials, Boolean functions, tensor rank, bias, correlation}
}
Document
##### Torus Polynomials: An Algebraic Approach to ACC Lower Bounds

Authors: Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)

##### Abstract
We propose an algebraic approach to proving circuit lower bounds for ACC^0 by defining and studying the notion of torus polynomials. We show how currently known polynomial-based approximation results for AC^0 and ACC^0 can be reformulated in this framework, implying that ACC^0 can be approximated by low-degree torus polynomials. Furthermore, as a step towards proving ACC^0 lower bounds for the majority function via our approach, we show that MAJORITY cannot be approximated by low-degree symmetric torus polynomials. We also pose several open problems related to our framework.

##### Cite as

Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao. Torus Polynomials: An Algebraic Approach to ACC Lower Bounds. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 13:1-13:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

@InProceedings{bhrushundi_et_al:LIPIcs.ITCS.2019.13,
author =	{Bhrushundi, Abhishek and Hosseini, Kaave and Lovett, Shachar and Rao, Sankeerth},
title =	{{Torus Polynomials: An Algebraic Approach to ACC Lower Bounds}},
booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
pages =	{13:1--13:16},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-095-8},
ISSN =	{1868-8969},
year =	{2019},
volume =	{124},
editor =	{Blum, Avrim},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.13},
URN =		{urn:nbn:de:0030-drops-101066},
doi =		{10.4230/LIPIcs.ITCS.2019.13},
annote =	{Keywords: Circuit complexity, ACC, lower bounds, polynomials}
}
Document
##### On Polynomial Approximations Over Z/2^kZ*

Authors: Abhishek Bhrushundi, Prahladh Harsha, and Srikanth Srinivasan

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)

##### Abstract
We study approximation of Boolean functions by low-degree polynomials over the ring Z/2^kZ. More precisely, given a Boolean function F:{0,1}^n -> {0,1}, define its k-lift to be F_k:{0,1}^n -> {0,2^(k-1)} by F_k(x) = 2^(k-F(x)) (mod 2^k). We consider the fractional agreement (which we refer to as \gamma_{d,k}(F)) of F_k with degree d polynomials from Z/2^kZ[x_1,..,x_n]. Our results are the following: * Increasing k can help: We observe that as k increases, gamma_{d,k}(F) cannot decrease. We give two kinds of examples where gamma_{d,k}(F) actually increases. The first is an infinite family of functions F such that gamma_{2d,2}(F) - gamma_{3d-1,1}(F) >= Omega(1). The second is an infinite family of functions F such that gamma_{d,1}(F) <= 1/2+o(1) - as small as possible - but gamma_{d,3}(F) >= 1/2 + Omega(1). * Increasing k doesn't always help: Adapting a proof of Green [Comput. Complexity, 9(1):16--38, 2000], we show that irrespective of the value of k, the Majority function Maj_n satisfies gamma_{d,k}(Maj_n) <= 1/2+ O(d)/sqrt{n}. In other words, polynomials over Z/2^kZ for large k do not approximate the majority function any better than polynomials over Z/2Z. We observe that the model we study subsumes the model of non-classical polynomials, in the sense that proving bounds in our model implies bounds on the agreement of non-classical polynomials with Boolean functions. In particular, our results answer questions raised by Bhowmick and Lovett [In Proc. 30th Computational Complexity Conf., pages 72-87, 2015] that ask whether non-classical polynomials approximate Boolean functions better than classical polynomials of the same degree.

##### Cite as

Abhishek Bhrushundi, Prahladh Harsha, and Srikanth Srinivasan. On Polynomial Approximations Over Z/2^kZ*. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

@InProceedings{bhrushundi_et_al:LIPIcs.STACS.2017.12,
author =	{Bhrushundi, Abhishek and Harsha, Prahladh and Srinivasan, Srikanth},
title =	{{On Polynomial Approximations Over Z/2^kZ*}},
booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
pages =	{12:1--12:12},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-028-6},
ISSN =	{1868-8969},
year =	{2017},
volume =	{66},
editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.12},
URN =		{urn:nbn:de:0030-drops-70212},
doi =		{10.4230/LIPIcs.STACS.2017.12},
annote =	{Keywords: Polynomials over rings, Approximation by polynomials, Boolean functions, Non-classical polynomials}
}
X

Feedback for Dagstuhl Publishing