Search Results

Documents authored by Carmel, Amir


Document
Track A: Algorithms, Complexity and Games
Fitting Tree Metrics and Ultrametrics in Data Streams

Authors: Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Fitting distances to tree metrics and ultrametrics are two widely used methods in hierarchical clustering, primarily explored within the context of numerical taxonomy. Formally, given a positive distance function D: binom(V,2) → ℝ_{>0}, the goal is to find a tree (or an ultrametric) T including all elements of set V, such that the difference between the distances among vertices in T and those specified by D is minimized. Numerical taxonomy was first introduced by Sneath and Sokal [Nature 1962], and since then it has been studied extensively in both biology and computer science. In this paper, we initiate the study of ultrametric and tree metric fitting problems in the semi-streaming model, where the distances between pairs of elements from V (with |V| = n), defined by the function D, can arrive in an arbitrary order. We study these problems under various distance norms; namely the 𝓁₀ objective, which aims to minimize the number of modified entries in D to fit a tree-metric or an ultrametric; the 𝓁₁ objective, which seeks to minimize the total sum of distance errors across all pairs of points in V; and the 𝓁_∞ objective, which focuses on minimizing the maximum error incurred by any entries in D. - Our first result addresses the 𝓁₀ objective. We provide a single-pass polynomial-time Õ(n)-space O(1) approximation algorithm for ultrametrics and prove that no single-pass exact algorithm exists, even with exponential time. - Next, we show that the algorithm for 𝓁₀ implies an O(Δ/δ) approximation for the 𝓁₁ objective, where Δ is the maximum, and δ is the minimum absolute difference between distances in the input. This bound matches the best-known approximation for the RAM model using a combinatorial algorithm when Δ/δ = O(n). - For the 𝓁_∞ objective, we provide a complete characterization of the ultrametric fitting problem. First, we present a single-pass polynomial-time Õ(n)-space 2-approximation algorithm and show that no better than 2-approximation is possible, even with exponential time. Furthermore, we show that with an additional pass, it is possible to achieve a polynomial-time exact algorithm for ultrametrics. - Finally, we extend all these results to tree metrics by using only one additional pass through the stream and without asymptotically increasing the approximation factor.

Cite as

Amir Carmel, Debarati Das, Evangelos Kipouridis, and Evangelos Pipis. Fitting Tree Metrics and Ultrametrics in Data Streams. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 42:1-42:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.ICALP.2025.42,
  author =	{Carmel, Amir and Das, Debarati and Kipouridis, Evangelos and Pipis, Evangelos},
  title =	{{Fitting Tree Metrics and Ultrametrics in Data Streams}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{42:1--42:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.42},
  URN =		{urn:nbn:de:0030-drops-234197},
  doi =		{10.4230/LIPIcs.ICALP.2025.42},
  annote =	{Keywords: Streaming, Clustering, Ultrametrics, Tree metrics, Distance fitting}
}
Document
Coresets for 1-Center in 𝓁₁ Metrics

Authors: Amir Carmel, Chengzhi Guo, Shaofeng H.-C. Jiang, and Robert Krauthgamer

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We explore the applicability of coresets - a small subset of the input dataset that approximates a predefined set of queries - to the 1-center problem in 𝓁₁ spaces. This approach could potentially extend to solving the 1-center problem in related metric spaces, and has implications for streaming and dynamic algorithms. We show that in 𝓁₁, unlike in Euclidean space, even weak coresets exhibit exponential dependency on the underlying dimension. Moreover, while inputs with a unique optimal center admit better bounds, they are not dimension independent. We then relax the guarantee of the coreset further, to merely approximate the value (optimal cost of 1-center), and obtain a dimension-independent coreset for every desired accuracy ε > 0. Finally, we discuss the broader implications of our findings to related metric spaces, and show explicit implications to Jaccard and Kendall’s tau distances.

Cite as

Amir Carmel, Chengzhi Guo, Shaofeng H.-C. Jiang, and Robert Krauthgamer. Coresets for 1-Center in 𝓁₁ Metrics. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.ITCS.2025.28,
  author =	{Carmel, Amir and Guo, Chengzhi and Jiang, Shaofeng H.-C. and Krauthgamer, Robert},
  title =	{{Coresets for 1-Center in 𝓁₁ Metrics}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.28},
  URN =		{urn:nbn:de:0030-drops-226566},
  doi =		{10.4230/LIPIcs.ITCS.2025.28},
  annote =	{Keywords: clustering, k-center, minimum enclosing balls, coresets, 𝓁₁ norm, Kendall’s tau, Jaccard metric}
}
Document
On Almost Monge All Scores Matrices

Authors: Amir Carmel, Dekel Tsur, and Michal Ziv-Ukelson

Published in: LIPIcs, Volume 54, 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016)


Abstract
The all scores matrix of a grid graph is a matrix containing the optimal scores of paths from every vertex on the first row of the graph to every vertex on the last row. This matrix is commonly used to solve diverse string comparison problems. All scores matrices have the Monge property, and this was exploited by previous works that used all scores matrices for solving various problems. In this paper, we study an extension of grid graphs that contain an additional set of edges, called bridges. Our main result is to show several properties of the all scores matrices of such graphs. We also give an O(r(nm + n2)) time algorithm for constructing the all scores matrix of an m × n grid graph with r bridges.

Cite as

Amir Carmel, Dekel Tsur, and Michal Ziv-Ukelson. On Almost Monge All Scores Matrices. In 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 54, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{carmel_et_al:LIPIcs.CPM.2016.17,
  author =	{Carmel, Amir and Tsur, Dekel and Ziv-Ukelson, Michal},
  title =	{{On Almost Monge All Scores Matrices}},
  booktitle =	{27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-012-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{54},
  editor =	{Grossi, Roberto and Lewenstein, Moshe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2016.17},
  URN =		{urn:nbn:de:0030-drops-60770},
  doi =		{10.4230/LIPIcs.CPM.2016.17},
  annote =	{Keywords: Sequence alignment, longest common subsequences, DIST matrices, Monge matrices, all path score computations.}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail