Search Results

Documents authored by Cerda, Rémy


Document
Ohana Trees and Taylor Expansion for the λI-Calculus: No variable gets left behind or forgotten!

Authors: Rémy Cerda, Giulio Manzonetto, and Alexis Saurin

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Although the λI-calculus is a natural fragment of the λ-calculus, obtained by forbidding the erasure, its equational theories did not receive much attention. The reason is that all proper denotational models studied in the literature equate all non-normalizable λI-terms, whence the associated theory is not very informative. The goal of this paper is to introduce a previously unknown theory of the λI-calculus, induced by a notion of evaluation trees that we call "Ohana trees". The Ohana tree of a λI-term is an annotated version of its Böhm tree, remembering all free variables that are hidden within its meaningless subtrees, or pushed into infinity along its infinite branches. We develop the associated theories of program approximation: the first approach - more classic - is based on finite trees and continuity, the second adapts Ehrhard and Regnier’s Taylor expansion. We then prove a Commutation Theorem stating that the normal form of the Taylor expansion of a λI-term coincides with the Taylor expansion of its Ohana tree. As a corollary, we obtain that the equality induced by Ohana trees is compatible with abstraction and application. We conclude by discussing the cases of Lévy-Longo and Berarducci trees, and generalizations to the full λ-calculus.

Cite as

Rémy Cerda, Giulio Manzonetto, and Alexis Saurin. Ohana Trees and Taylor Expansion for the λI-Calculus: No variable gets left behind or forgotten!. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cerda_et_al:LIPIcs.FSCD.2025.12,
  author =	{Cerda, R\'{e}my and Manzonetto, Giulio and Saurin, Alexis},
  title =	{{Ohana Trees and Taylor Expansion for the \lambdaI-Calculus: No variable gets left behind or forgotten!}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.12},
  URN =		{urn:nbn:de:0030-drops-236277},
  doi =		{10.4230/LIPIcs.FSCD.2025.12},
  annote =	{Keywords: \lambda-calculus, program approximation, Taylor expansion, \lambdaI-calculus, persistent free variables, B\"{o}hm trees, Ohana trees}
}
Document
How to Play the Accordion: Uniformity and the (Non-)Conservativity of the Linear Approximation of the λ-Calculus

Authors: Rémy Cerda and Lionel Vaux Auclair

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Twenty years after its introduction by Ehrhard and Regnier, differentiation in λ-calculus and in linear logic is now a celebrated tool. In particular, it allows to write the Taylor formula in various λ-calculi, hence providing a theory of linear approximations for these calculi. In the standard λ-calculus, this linear approximation is expressed by results stating that the (possibly) infinitary β-reduction of λ-terms is simulated by the reduction of their Taylor expansion: in terms of rewriting systems, the resource reduction (operating on Taylor approximants) is an extension of the β-reduction. In this paper, we address the converse property, conservativity: are there reductions of the Taylor approximants that do not arise from an actual β-reduction of the approximated term? We show that if we restrict the setting to finite terms and β-reduction sequences, then the linear approximation is conservative. However, as soon as one allows infinitary reduction sequences this property is broken. We design a counter-example, the Accordion. Then we show how restricting the reduction of the Taylor approximants allows to build a conservative extension of the β-reduction preserving good simulation properties. This restriction relies on uniformity, a property that was already at the core of Ehrhard and Regnier’s pioneering work.

Cite as

Rémy Cerda and Lionel Vaux Auclair. How to Play the Accordion: Uniformity and the (Non-)Conservativity of the Linear Approximation of the λ-Calculus. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cerda_et_al:LIPIcs.STACS.2025.23,
  author =	{Cerda, R\'{e}my and Vaux Auclair, Lionel},
  title =	{{How to Play the Accordion: Uniformity and the (Non-)Conservativity of the Linear Approximation of the \lambda-Calculus}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{23:1--23:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.23},
  URN =		{urn:nbn:de:0030-drops-228480},
  doi =		{10.4230/LIPIcs.STACS.2025.23},
  annote =	{Keywords: program approximation, quantitative semantics, lambda-calculus, linear approximation, Taylor expansion, conservativity}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail