Search Results

Documents authored by Chakraborty, Arghya


Document
Optimal Online Bipartite Matching in Degree-2 Graphs

Authors: Amey Bhangale, Arghya Chakraborty, and Prahladh Harsha

Published in: LIPIcs, Volume 359, 36th International Symposium on Algorithms and Computation (ISAAC 2025)


Abstract
Online bipartite matching is a classical problem in online algorithms and we know that both the deterministic fractional and randomized integral online matchings achieve the same competitive ratio of 1-1/e. In this work, we study classes of graphs where the online degree is restricted to 2. As expected, one can achieve a competitive ratio of better than 1-1/e in both the deterministic fractional and randomized integral cases, but surprisingly, these ratios are not the same. It was already known that for fractional matching, a 0.75 competitive ratio algorithm is optimal. We show that the folklore Half-Half algorithm achieves a competitive ratio of η ≈ 0.717772… and more surprisingly, show that this is optimal by giving a matching lower-bound. This yields a separation between the two problems: deterministic fractional and randomized integral, showing that it is impossible to obtain a perfect rounding scheme.

Cite as

Amey Bhangale, Arghya Chakraborty, and Prahladh Harsha. Optimal Online Bipartite Matching in Degree-2 Graphs. In 36th International Symposium on Algorithms and Computation (ISAAC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 359, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhangale_et_al:LIPIcs.ISAAC.2025.13,
  author =	{Bhangale, Amey and Chakraborty, Arghya and Harsha, Prahladh},
  title =	{{Optimal Online Bipartite Matching in Degree-2 Graphs}},
  booktitle =	{36th International Symposium on Algorithms and Computation (ISAAC 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-408-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{359},
  editor =	{Chen, Ho-Lin and Hon, Wing-Kai and Tsai, Meng-Tsung},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2025.13},
  URN =		{urn:nbn:de:0030-drops-249216},
  doi =		{10.4230/LIPIcs.ISAAC.2025.13},
  annote =	{Keywords: Online Algorithm, Bipartite matching}
}
Document
Online Facility Location with Weights and Congestion

Authors: Arghya Chakraborty and Rahul Vaze

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
The classic online facility location problem deals with finding the optimal set of facilities in an online fashion when demand requests arrive one at a time and facilities need to be opened to service these requests. In this work, we study two variants of the online facility location problem; (1) weighted requests and (2) congestion. Both of these variants are motivated by their applications to real life scenarios and the previously known results on online facility location cannot be directly adapted to analyse them. - Weighted requests: In this variant, each demand request is a pair (x,w) where x is the standard location of the demand while w is the corresponding weight of the request. The cost of servicing request (x,w) at facility F is w⋅ d(x,F). For this variant, given n requests, we present an online algorithm attaining a competitive ratio of 𝒪(log n) in the secretarial model for the weighted requests and show that it is optimal. -Congestion: The congestion variant considers the case when there is a congestion cost that grows with the number of requests served by each facility. For this variant, when the congestion cost is a monomial, we show that there exists an algorithm attaining a constant competitive ratio. This constant is a function of the exponent of the monomial and the facility opening cost but independent of the number of requests.

Cite as

Arghya Chakraborty and Rahul Vaze. Online Facility Location with Weights and Congestion. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 6:1-6:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.FSTTCS.2023.6,
  author =	{Chakraborty, Arghya and Vaze, Rahul},
  title =	{{Online Facility Location with Weights and Congestion}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.6},
  URN =		{urn:nbn:de:0030-drops-193797},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.6},
  annote =	{Keywords: online algorithms, online facility location, probabilistic method, weighted-requests, congestion}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail