Search Results

Documents authored by Chen, Justin Y.


Document
Space-Optimal Profile Estimation in Data Streams with Applications to Symmetric Functions

Authors: Justin Y. Chen, Piotr Indyk, and David P. Woodruff

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We revisit the problem of estimating the profile (also known as the rarity) in the data stream model. Given a sequence of m elements from a universe of size n, its profile is a vector ϕ whose i-th entry ϕ_i represents the number of distinct elements that appear in the stream exactly i times. A classic paper by Datar and Muthukrishan from 2002 gave an algorithm which estimates any entry ϕ_i up to an additive error of ± ε D using O(1/ε² (log n + log m)) bits of space, where D is the number of distinct elements in the stream. In this paper, we considerably improve on this result by designing an algorithm which simultaneously estimates many coordinates of the profile vector ϕ up to small overall error. We give an algorithm which, with constant probability, produces an estimated profile ϕˆ with the following guarantees in terms of space and estimation error: b) For any constant τ, with O(1 / ε² + log n) bits of space, ∑_{i = 1}^τ |ϕ_i - ϕˆ_i| ≤ ε D. c) With O(1/ ε²log (1/ε) + log n + log log m) bits of space, ∑_{i = 1}^m |ϕ_i - ϕˆ_i| ≤ ε m. In addition to bounding the error across multiple coordinates, our space bounds separate the terms that depend on 1/ε and those that depend on n and m. We prove matching lower bounds on space in both regimes. Application of our profile estimation algorithm gives estimates within error ± ε D of several symmetric functions of frequencies in O(1/ε² + log n) bits. This generalizes space-optimal algorithms for the distinct elements problems to other problems including estimating the Huber and Tukey losses as well as frequency cap statistics.

Cite as

Justin Y. Chen, Piotr Indyk, and David P. Woodruff. Space-Optimal Profile Estimation in Data Streams with Applications to Symmetric Functions. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2024.32,
  author =	{Chen, Justin Y. and Indyk, Piotr and Woodruff, David P.},
  title =	{{Space-Optimal Profile Estimation in Data Streams with Applications to Symmetric Functions}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.32},
  URN =		{urn:nbn:de:0030-drops-195605},
  doi =		{10.4230/LIPIcs.ITCS.2024.32},
  annote =	{Keywords: Streaming and Sketching Algorithms, Sublinear Algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail