Search Results

Documents authored by Chen, Yanlin


Document
APPROX
QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem, Strong Simulation, Hitting Set Problem, and More

Authors: Yanlin Chen, Yilei Chen, Rajendra Kumar, Subhasree Patro, and Florian Speelman

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Despite the wide range of problems for which quantum computers offer a computational advantage over their classical counterparts, there are also many problems for which the best known quantum algorithm provides a speedup that is only quadratic, or even subquadratic. Such a situation could also be desirable if we don't want quantum computers to solve certain problems fast - say problems relevant to post-quantum cryptography. When searching for algorithms and when analyzing the security of cryptographic schemes, we would like to have evidence that these problems are difficult to solve on quantum computers; but how do we assess the exact complexity of these problems? For most problems, there are no known ways to directly prove time lower bounds, however it can still be possible to relate the hardness of disparate problems to show conditional lower bounds. This approach has been popular in the classical community, and is being actively developed for the quantum case [Aaronson et al., 2020; Buhrman et al., 2021; Harry Buhrman et al., 2022; Andris Ambainis et al., 2022]. In this paper, by the use of the QSETH framework [Buhrman et al., 2021] we are able to understand the quantum complexity of a few natural variants of CNFSAT, such as parity-CNFSAT or counting-CNFSAT, and also are able to comment on the non-trivial complexity of approximate versions of counting-CNFSAT. Without considering such variants, the best quantum lower bounds will always be quadratically lower than the equivalent classical bounds, because of Grover’s algorithm; however, we are able to show that quantum algorithms will likely not attain even a quadratic speedup for many problems. These results have implications for the complexity of (variations of) lattice problems, the strong simulation and hitting set problems, and more. In the process, we explore the QSETH framework in greater detail and present a useful guide on how to effectively use the QSETH framework.

Cite as

Yanlin Chen, Yilei Chen, Rajendra Kumar, Subhasree Patro, and Florian Speelman. QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem, Strong Simulation, Hitting Set Problem, and More. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2025.6,
  author =	{Chen, Yanlin and Chen, Yilei and Kumar, Rajendra and Patro, Subhasree and Speelman, Florian},
  title =	{{QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem, Strong Simulation, Hitting Set Problem, and More}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.6},
  URN =		{urn:nbn:de:0030-drops-243723},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.6},
  annote =	{Keywords: Quantum conditional lower bounds, Fine-grained complexity, Lattice problems, Quantum strong simulation, Hitting set problem, QSETH}
}
Document
Track A: Algorithms, Complexity and Games
Quantum Algorithms and Lower Bounds for Linear Regression with Norm Constraints

Authors: Yanlin Chen and Ronald de Wolf

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Lasso and Ridge are important minimization problems in machine learning and statistics. They are versions of linear regression with squared loss where the vector θ ∈ ℝ^d of coefficients is constrained in either 𝓁₁-norm (for Lasso) or in 𝓁₂-norm (for Ridge). We study the complexity of quantum algorithms for finding ε-minimizers for these minimization problems. We show that for Lasso we can get a quadratic quantum speedup in terms of d by speeding up the cost-per-iteration of the Frank-Wolfe algorithm, while for Ridge the best quantum algorithms are linear in d, as are the best classical algorithms. As a byproduct of our quantum lower bound for Lasso, we also prove the first classical lower bound for Lasso that is tight up to polylog-factors.

Cite as

Yanlin Chen and Ronald de Wolf. Quantum Algorithms and Lower Bounds for Linear Regression with Norm Constraints. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 38:1-38:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2023.38,
  author =	{Chen, Yanlin and de Wolf, Ronald},
  title =	{{Quantum Algorithms and Lower Bounds for Linear Regression with Norm Constraints}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{38:1--38:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.38},
  URN =		{urn:nbn:de:0030-drops-180907},
  doi =		{10.4230/LIPIcs.ICALP.2023.38},
  annote =	{Keywords: Quantum algorithms, Regularized linear regression, Lasso, Ridge, Lower bounds}
}
Document
Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded Distance Decoding

Authors: Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum algorithms for SVP. We present the following results. 1) A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory requirement. For any positive integer 4 ≤ q ≤ √n, our algorithm takes q^{13n+o(n)} time and requires poly(n)⋅ q^{16n/q²} memory. This tradeoff which ranges from enumeration (q = √n) to sieving (q constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian sampling above the smoothing parameter. 2) A quantum algorithm that runs in time 2^{0.9533n+o(n)} and requires 2^{0.5n+o(n)} classical memory and poly(n) qubits. This improves over the previously fastest classical (which is also the fastest quantum) algorithm due to [Divesh Aggarwal et al., 2015] that has a time and space complexity 2^{n+o(n)}. 3) A classical algorithm for SVP that runs in time 2^{1.741n+o(n)} time and 2^{0.5n+o(n)} space. This improves over an algorithm of [Yanlin Chen et al., 2018] that has the same space complexity. The time complexity of our classical and quantum algorithms are expressed using a quantity related to the kissing number of a lattice. A known upper bound of this quantity is 2^{0.402n}, but in practice for most lattices, it can be much smaller and even 2^o(n). In that case, our classical algorithm runs in time 2^{1.292n} and our quantum algorithm runs in time 2^{0.750n}.

Cite as

Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, and Yixin Shen. Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded Distance Decoding. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aggarwal_et_al:LIPIcs.STACS.2021.4,
  author =	{Aggarwal, Divesh and Chen, Yanlin and Kumar, Rajendra and Shen, Yixin},
  title =	{{Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded Distance Decoding}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.4},
  URN =		{urn:nbn:de:0030-drops-136494},
  doi =		{10.4230/LIPIcs.STACS.2021.4},
  annote =	{Keywords: Lattices, Shortest Vector Problem, Discrete Gaussian Sampling, Time-Space Tradeoff, Quantum computation, Bounded distance decoding}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail