Search Results

Documents authored by Chu, Huairui


Document
FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set

Authors: Huairui Chu and Bingkai Lin

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Treewidth is a useful tool in designing graph algorithms. Although many NP-hard graph problems can be solved in linear time when the input graphs have small treewidth, there are problems which remain hard on graphs of bounded treewidth. In this paper, we consider three vertex selection problems that are W[1]-hard when parameterized by the treewidth of the input graph, namely the capacitated vertex cover problem, the target set selection problem and the vector dominating set problem. We provide two new methods to obtain FPT approximation algorithms for these problems. For the capacitated vertex cover problem and the vector dominating set problem, we obtain (1+o(1))-approximation FPT algorithms. For the target set selection problem, we give an FPT algorithm providing a tradeoff between its running time and the approximation ratio.

Cite as

Huairui Chu and Bingkai Lin. FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chu_et_al:LIPIcs.ISAAC.2023.19,
  author =	{Chu, Huairui and Lin, Bingkai},
  title =	{{FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set Selection and Vector Dominating Set}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.19},
  URN =		{urn:nbn:de:0030-drops-193216},
  doi =		{10.4230/LIPIcs.ISAAC.2023.19},
  annote =	{Keywords: FPT approximation algorithm, Treewidth, Capacitated vertex cover, Target set selection, Vector dominating set}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail