Search Results

Documents authored by Chun, Jinhee


Document
Consistent Digital Curved Rays and Pseudoline Arrangements

Authors: Jinhee Chun, Kenya Kikuchi, and Takeshi Tokuyama

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Representing a family of geometric objects in the digital world where each object is represented by a set of pixels is a basic problem in graphics and computational geometry. One important criterion is the consistency, where the intersection pattern of the objects should be consistent with axioms of the Euclidean geometry, e.g., the intersection of two lines should be a single connected component. Previously, the set of linear rays and segments has been considered. In this paper, we extended this theory to families of curved rays going through the origin. We further consider some psudoline arrangements obtained as unions of such families of rays.

Cite as

Jinhee Chun, Kenya Kikuchi, and Takeshi Tokuyama. Consistent Digital Curved Rays and Pseudoline Arrangements. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 32:1-32:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chun_et_al:LIPIcs.ESA.2019.32,
  author =	{Chun, Jinhee and Kikuchi, Kenya and Tokuyama, Takeshi},
  title =	{{Consistent Digital Curved Rays and Pseudoline Arrangements}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{32:1--32:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.32},
  URN =		{urn:nbn:de:0030-drops-111538},
  doi =		{10.4230/LIPIcs.ESA.2019.32},
  annote =	{Keywords: Computational Geometry, Digital Geometry, Spanning Tree, Graph Drawing}
}
Document
Multimedia Contribution
Folding Free-Space Diagrams: Computing the Fréchet Distance between 1-Dimensional Curves (Multimedia Contribution)

Authors: Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans, Yoshio Okamoto, and Taichi Shiitada

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
By folding the free-space diagram for efficient preprocessing, we show that the Frechet distance between 1D curves can be computed in O(nk log n) time, assuming one curve has ply k.

Cite as

Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans, Yoshio Okamoto, and Taichi Shiitada. Folding Free-Space Diagrams: Computing the Fréchet Distance between 1-Dimensional Curves (Multimedia Contribution). In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 64:1-64:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.SoCG.2017.64,
  author =	{Buchin, Kevin and Chun, Jinhee and L\"{o}ffler, Maarten and Markovic, Aleksandar and Meulemans, Wouter and Okamoto, Yoshio and Shiitada, Taichi},
  title =	{{Folding Free-Space Diagrams: Computing the Fr\'{e}chet Distance between 1-Dimensional Curves}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{64:1--64:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.64},
  URN =		{urn:nbn:de:0030-drops-72417},
  doi =		{10.4230/LIPIcs.SoCG.2017.64},
  annote =	{Keywords: Frechet distance, ply, k-packed curves}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail