Search Results

Documents authored by Corsini, Timothée


Document
Dismountability in Temporal Cliques Revisited

Authors: Daniele Carnevale, Arnaud Casteigts, and Timothée Corsini

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
A temporal graph is a graph whose edges are available only at certain points in time. It is temporally connected if the nodes can reach each other by paths that traverse the edges chronologically (temporal paths). Unlike static graphs, temporal graphs do not always admit small subsets of edges that preserve connectivity (temporal spanners) - there exist temporal graphs with Θ(n²) edges, all of which are critical. In the case of temporal cliques (the underlying graph is complete), spanners of size O(nlog n) are guaranteed. The original proof of this result by Casteigts et al. [ICALP 2019] combines a number of techniques, one of which is called dismountability. In a recent work, Angrick et al. [ESA 2024] simplified the proof and showed, among other things, that a one-sided version of dismountability can replace elegantly the second part of the proof. In this paper, we revisit methodically the dismountability principle. We start by characterizing the structure that a temporal clique must have if it is non 1-hop dismountable, then neither 1-hop nor 2-hop (i.e. non {1,2}-hop) dismountable, and finally non {1,2,3}-hop dismountable. It turns out that if a clique is k-hop dismountable for any other k, then it must also be {1,2,3}-hop dismountable, thus no additional structure can be obtained beyond this point. Interestingly, excluding 1-hop and 2-hop dismountability is already sufficient for reducing the spanner problem from cliques to extremally matched bicliques, where the O(nlog n) result is subsequently obtained. Put together with the strategy of Angrick et al., this entire result can now be recovered using only dismountability. An interesting by-product of our analysis is that any minimal counter-example to the existence of 4n spanners must satisfy the properties of non {1,2,3}-hop dismountable cliques. In the second part, we discuss further connections between dismountability and another technique called pivotability. In particular, we show that if a temporal clique is recursively k-hop dismountable, then it is also pivotable (and thus admits a 2n spanner, whatever k). We also study a family of labelings called full-range that forces both dismountability and pivotability. The latter gives some evidence that large lifetimes could be exploited more generally for the construction of spanners.

Cite as

Daniele Carnevale, Arnaud Casteigts, and Timothée Corsini. Dismountability in Temporal Cliques Revisited. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carnevale_et_al:LIPIcs.SAND.2025.6,
  author =	{Carnevale, Daniele and Casteigts, Arnaud and Corsini, Timoth\'{e}e},
  title =	{{Dismountability in Temporal Cliques Revisited}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.6},
  URN =		{urn:nbn:de:0030-drops-230591},
  doi =		{10.4230/LIPIcs.SAND.2025.6},
  annote =	{Keywords: Dynamic networks, Temporal graphs, Reachability, Dismountability, Pivotability, Temporal spanners, Full-range graphs}
}
Document
Robustness of Distances and Diameter in a Fragile Network

Authors: Arnaud Casteigts, Timothée Corsini, Hervé Hocquard, and Arnaud Labourel

Published in: LIPIcs, Volume 221, 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)


Abstract
A property of a graph G is robust if it remains unchanged in all connected spanning subgraphs of G. This form of robustness is motivated by networking contexts where some links eventually fail permanently, and the network keeps being used so long as it is connected. It is then natural to ask how certain properties of the network may be impacted as the network deteriorates. In this paper, we focus on two particular properties, which are the diameter, and pairwise distances among nodes. Surprisingly, the complexities of deciding whether these properties are robust are quite different: deciding the robustness of the diameter is coNP-complete, whereas deciding the robustness of the distance between two given nodes has a linear time complexity. This is counterintuitive, because the diameter consists of the maximum distance over all pairs of nodes, thus one may expect that the robustness of the diameter reduces to testing the robustness of pairwise distances. On the technical side, the difficulty of the diameter is established through a reduction from hamiltonian paths. The linear time algorithm for deciding robustness of the distance relies on a new characterization of two-terminal series-parallel graphs (TTSPs) in terms of excluded rooted minor, which may be of independent interest.

Cite as

Arnaud Casteigts, Timothée Corsini, Hervé Hocquard, and Arnaud Labourel. Robustness of Distances and Diameter in a Fragile Network. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 221, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{casteigts_et_al:LIPIcs.SAND.2022.9,
  author =	{Casteigts, Arnaud and Corsini, Timoth\'{e}e and Hocquard, Herv\'{e} and Labourel, Arnaud},
  title =	{{Robustness of Distances and Diameter in a Fragile Network}},
  booktitle =	{1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-224-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{221},
  editor =	{Aspnes, James and Michail, Othon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2022.9},
  URN =		{urn:nbn:de:0030-drops-159514},
  doi =		{10.4230/LIPIcs.SAND.2022.9},
  annote =	{Keywords: Dynamic networks, Longest path, Series-parallel graphs, Rooted minors}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail