Search Results

Documents authored by Eades, Peter


Document
GraphTrials: Visual Proofs of Graph Properties

Authors: Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Graph and network visualization supports exploration, analysis and communication of relational data arising in many domains: from biological and social networks, to transportation and powergrid systems. With the arrival of AI-based question-answering tools, issues of trustworthiness and explainability of generated answers motivate a greater role for visualization. In the context of graphs, we see the need for visualizations that can convince a critical audience that an assertion about the graph under analysis is valid. The requirements for such representations that convey precisely one specific graph property are quite different from standard network visualization criteria which optimize general aesthetics and readability. In this paper, we aim to provide a comprehensive introduction to visual proofs of graph properties and a foundation for further research in the area. We present a framework that defines what it means to visually prove a graph property. In the process, we introduce the notion of a visual certificate, that is, a specialized faithful graph visualization that leverages the viewer’s perception, in particular, pre-attentive processing (e. g. via pop-out effects), to verify a given assertion about the represented graph. We also discuss the relationships between visual complexity, cognitive load and complexity theory, and propose a classification based on visual proof complexity. Finally, we provide examples of visual certificates for problems in different visual proof complexity classes.

Cite as

Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber. GraphTrials: Visual Proofs of Graph Properties. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.GD.2024.16,
  author =	{F\"{o}rster, Henry and Klesen, Felix and Dwyer, Tim and Eades, Peter and Hong, Seok-Hee and Kobourov, Stephen G. and Liotta, Giuseppe and Misue, Kazuo and Montecchiani, Fabrizio and Pastukhov, Alexander and Schreiber, Falk},
  title =	{{GraphTrials: Visual Proofs of Graph Properties}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.16},
  URN =		{urn:nbn:de:0030-drops-213005},
  doi =		{10.4230/LIPIcs.GD.2024.16},
  annote =	{Keywords: Graph Visualization, Theory of Visualization, Visual Proof}
}
Document
Polyline Drawings with Topological Constraints

Authors: Emilio Di Giacomo, Peter Eades, Giuseppe Liotta, Henk Meijer, and Fabrizio Montecchiani

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Let G be a simple topological graph and let Gamma be a polyline drawing of G. We say that Gamma partially preserves the topology of G if it has the same external boundary, the same rotation system, and the same set of crossings as G. Drawing Gamma fully preserves the topology of G if the planarization of G and the planarization of Gamma have the same planar embedding. We show that if the set of crossing-free edges of G forms a connected spanning subgraph, then G admits a polyline drawing that partially preserves its topology and that has curve complexity at most three (i.e., at most three bends per edge). If, however, the set of crossing-free edges of G is not a connected spanning subgraph, the curve complexity may be Omega(sqrt{n}). Concerning drawings that fully preserve the topology, we show that if G has skewness k, it admits one such drawing with curve complexity at most 2k; for skewness-1 graphs, the curve complexity can be reduced to one, which is a tight bound. We also consider optimal 2-plane graphs and discuss trade-offs between curve complexity and crossing angle resolution of drawings that fully preserve the topology.

Cite as

Emilio Di Giacomo, Peter Eades, Giuseppe Liotta, Henk Meijer, and Fabrizio Montecchiani. Polyline Drawings with Topological Constraints. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 39:1-39:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{digiacomo_et_al:LIPIcs.ISAAC.2018.39,
  author =	{Di Giacomo, Emilio and Eades, Peter and Liotta, Giuseppe and Meijer, Henk and Montecchiani, Fabrizio},
  title =	{{Polyline Drawings with Topological Constraints}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{39:1--39:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.39},
  URN =		{urn:nbn:de:0030-drops-99871},
  doi =		{10.4230/LIPIcs.ISAAC.2018.39},
  annote =	{Keywords: Topological graphs, graph drawing, curve complexity, skewness-k graphs, k-planar graphs}
}
Document
Software Visualization (Dagstuhl Seminar 01211)

Authors: Stephan Diehl, Peter Eades, and John Stasko

Published in: Dagstuhl Seminar Reports. Dagstuhl Seminar Reports, Volume 1 (2021)


Abstract

Cite as

Stephan Diehl, Peter Eades, and John Stasko. Software Visualization (Dagstuhl Seminar 01211). Dagstuhl Seminar Report 307, pp. 1-35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2002)


Copy BibTex To Clipboard

@TechReport{diehl_et_al:DagSemRep.307,
  author =	{Diehl, Stephan and Eades, Peter and Stasko, John},
  title =	{{Software Visualization (Dagstuhl Seminar 01211)}},
  pages =	{1--35},
  ISSN =	{1619-0203},
  year =	{2002},
  type = 	{Dagstuhl Seminar Report},
  number =	{307},
  institution =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemRep.307},
  URN =		{urn:nbn:de:0030-drops-151915},
  doi =		{10.4230/DagSemRep.307},
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail