Search Results

Documents authored by Falk, Brett Hemenway


Document
MetaDORAM: Info-Theoretic Distributed ORAM with Less Communication

Authors: Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky

Published in: LIPIcs, Volume 343, 6th Conference on Information-Theoretic Cryptography (ITC 2025)


Abstract
A Distributed Oblivious RAM is a multi-party protocol that securely implements a RAM functionality on secret-shared inputs and outputs. This paper presents two information-theoretically secure DORAMs whose communication costs are asymptotic improvements over the state of the art. Let n be the number of memory locations and let d be the bit-length of each location. The first, MetaDORAM1, is statistically secure, with n^{-ω(1)} leakage. It has amortized O(log_b(n) d + b ω(1) log(n) + log³(n)/log(log(n))) bits of communication per memory access. Here, b ≥ 2 is a free parameter and ω(1) is any super-constant function (in n). The most communication-efficient prior statistically secure DORAM was that of Abraham et al (PKC 2017), which has cost O(log_b(n) d + b ω(1) log_b(n) log²(n)). MetaDORAM1 is a Θ(ω(1) log(log(n)))-factor improvement over the work of Abraham et al whenever d = O(log²(n)). The second protocol, MetaDORAM2, achieves perfect security. It has amortized communication cost O(log_b(n)d + b log(n) + log³(n)/log(log(n))) where, again, b ≥ 2 is a free parameter. The best prior perfectly secure DORAM is that of Chan et al (ASIACRYPT 2018) which has communication cost O(log(n) d + log³(n)). MetaDORAM2 is therefore a Ω(log(log(n)))-factor improvement over the DORAM of Chan et al under any parameter range (by setting b = log(n)) and is a Θ(log(n))-factor improvement for d = Ω(n^ε) for any constant ε > 0 (by setting b = d/log(n)). Our work is the first perfectly secure DORAM with sub-logarithmic communication overhead. MetaDORAM2 comes at the cost of a once-off (for any given n) setup phase which requires exponential (in n) computation. Both DORAMs are in the 3-party setting with security against 1 semi-honest, static corruption. By a trivial transformation, these can be transformed, respectively, into statistically and perfectly secure active 3-server ORAM protocols secure against 1 corrupt server, with the same communication costs. These multi-server ORAM protocols are likewise asymptotic improvements over the state of the art.

Cite as

Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. MetaDORAM: Info-Theoretic Distributed ORAM with Less Communication. In 6th Conference on Information-Theoretic Cryptography (ITC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 343, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{falk_et_al:LIPIcs.ITC.2025.6,
  author =	{Falk, Brett Hemenway and Noble, Daniel and Ostrovsky, Rafail},
  title =	{{MetaDORAM: Info-Theoretic Distributed ORAM with Less Communication}},
  booktitle =	{6th Conference on Information-Theoretic Cryptography (ITC 2025)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-385-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{343},
  editor =	{Gilboa, Niv},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2025.6},
  URN =		{urn:nbn:de:0030-drops-243560},
  doi =		{10.4230/LIPIcs.ITC.2025.6},
  annote =	{Keywords: ORAM, MPC, DORAM, multi-server ORAM, active ORAM}
}
Document
Secure Merge with O(n log log n) Secure Operations

Authors: Brett Hemenway Falk and Rafail Ostrovsky

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
Data-oblivious algorithms are a key component of many secure computation protocols. In this work, we show that advances in secure multiparty shuffling algorithms can be used to increase the efficiency of several key cryptographic tools. The key observation is that many secure computation protocols rely heavily on secure shuffles. The best data-oblivious shuffling algorithms require O(n log n), operations, but in the two-party or multiparty setting, secure shuffling can be achieved with only O(n) communication. Leveraging the efficiency of secure multiparty shuffling, we give novel, information-theoretic algorithms that improve the efficiency of securely sorting sparse lists, secure stable compaction, and securely merging two sorted lists. Securely sorting private lists is a key component of many larger secure computation protocols. The best data-oblivious sorting algorithms for sorting a list of n elements require O(n log n) comparisons. Using black-box access to a linear-communication secure shuffle, we give a secure algorithm for sorting a list of length n with t ≪ n nonzero elements with communication O(t log² n + n), which beats the best oblivious algorithms when the number of nonzero elements, t, satisfies t < n/log² n. Secure compaction is the problem of removing dummy elements from a list, and is essentially equivalent to sorting on 1-bit keys. The best oblivious compaction algorithms run in O(n)-time, but they are unstable, i.e., the order of the remaining elements is not preserved. Using black-box access to a linear-communication secure shuffle, we give an information-theoretic stable compaction algorithm with only O(n) communication. Our main result is a novel secure merge protocol. The best previous algorithms for securely merging two sorted lists into a sorted whole required O(n log n) secure operations. Using black-box access to an O(n)-communication secure shuffle, we give the first multi-party secure merge algorithm that requires only O(n log log n) communication. Our algorithm takes as input n secret-shared values, and outputs a secret-sharing of the sorted list. All our algorithms are generic, i.e., they can be implemented using generic secure computations techniques and make black-box access to a secure shuffle. Our techniques extend naturally to the multiparty situation (with a constant number of parties) as well as to handle malicious adversaries without changing the asymptotic efficiency. These algorithm have applications to securely computing database joins and order statistics on private data as well as multiparty Oblivious RAM protocols.

Cite as

Brett Hemenway Falk and Rafail Ostrovsky. Secure Merge with O(n log log n) Secure Operations. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 7:1-7:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{falk_et_al:LIPIcs.ITC.2021.7,
  author =	{Falk, Brett Hemenway and Ostrovsky, Rafail},
  title =	{{Secure Merge with O(n log log n) Secure Operations}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{7:1--7:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.7},
  URN =		{urn:nbn:de:0030-drops-143265},
  doi =		{10.4230/LIPIcs.ITC.2021.7},
  annote =	{Keywords: Secure computation, Data-oblivious algorithms, Sorting, Merging, Shuffling, Compaction}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail