Search Results

Documents authored by Folkertsma, Marten


Document
Quantum Catalytic Space

Authors: Harry Buhrman, Marten Folkertsma, Ian Mertz, Florian Speelman, Sergii Strelchuk, Sathyawageeswar Subramanian, and Quinten Tupker

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Space complexity is a key field of study in theoretical computer science. In the quantum setting there are clear motivations to understand the power of space-restricted computation, as qubits are an especially precious and limited resource. Recently, a new branch of space-bounded complexity called catalytic computing has shown that reusing space is a very powerful computational resource, especially for subroutines that incur little to no space overhead. While quantum catalysis in an information theoretic context, and the power of "dirty" qubits for quantum computation, has been studied over the years, these models are generally not suitable for use in quantum space-bounded algorithms, as they either rely on specific catalytic states or destroy the memory being borrowed. We define the notion of catalytic computing in the quantum setting and show a number of initial results about the model. First, we show that quantum catalytic logspace can always be computed quantumly in polynomial time; the classical analogue of this is the largest open question in catalytic computing. This also allows quantum catalytic space to be defined in an equivalent way with respect to circuits instead of Turing machines. We also prove that quantum catalytic logspace can simulate log-depth threshold circuits, a class which is known to contain (and believed to strictly contain) quantum logspace, thus showcasing the power of quantum catalytic space. Finally we show that both unitary quantum catalytic logspace and classical catalytic logspace can be simulated in the one-clean qubit model.

Cite as

Harry Buhrman, Marten Folkertsma, Ian Mertz, Florian Speelman, Sergii Strelchuk, Sathyawageeswar Subramanian, and Quinten Tupker. Quantum Catalytic Space. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buhrman_et_al:LIPIcs.TQC.2025.11,
  author =	{Buhrman, Harry and Folkertsma, Marten and Mertz, Ian and Speelman, Florian and Strelchuk, Sergii and Subramanian, Sathyawageeswar and Tupker, Quinten},
  title =	{{Quantum Catalytic Space}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{11:1--11:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.11},
  URN =		{urn:nbn:de:0030-drops-240606},
  doi =		{10.4230/LIPIcs.TQC.2025.11},
  annote =	{Keywords: quantum computing, quantum complexity, space-bounded algorithms, catalytic computation, one clean qubit}
}
Document
Fully Characterizing Lossy Catalytic Computation

Authors: Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A catalytic machine is a model of computation where a traditional space-bounded machine is augmented with an additional, significantly larger, "catalytic" tape, which, while being available as a work tape, has the caveat of being initialized with an arbitrary string, which must be preserved at the end of the computation. Despite this restriction, catalytic machines have been shown to have surprising additional power; a logspace machine with a polynomial length catalytic tape, known as catalytic logspace (CL), can compute problems which are believed to be impossible for L. A fundamental question of the model is whether the catalytic condition, of leaving the catalytic tape in its exact original configuration, is robust to minor deviations. This study was initialized by Gupta et al. (2024), who defined lossy catalytic logspace (LCL[e]) as a variant of CL where we allow up to e errors when resetting the catalytic tape. They showed that LCL[e] = CL for any e = O(1), which remains the frontier of our understanding. In this work we completely characterize lossy catalytic space (LCSPACE[s,c,e]) in terms of ordinary catalytic space (CSPACE[s,c]). We show that LCSPACE[s,c,e] = CSPACE[Θ(s + e log c), Θ(c)] In other words, allowing e errors on a catalytic tape of length c is equivalent, up to a constant stretch, to an equivalent errorless catalytic machine with an additional e log c bits of ordinary working memory. As a consequence, we show that for any e, LCL[e] = CL implies SPACE[e log n] ⊆ ZPP, thus giving a barrier to any improvement beyond LCL[O(1)] = CL. We also show equivalent results for non-deterministic and randomized catalytic space.

Cite as

Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker. Fully Characterizing Lossy Catalytic Computation. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 50:1-50:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{folkertsma_et_al:LIPIcs.ITCS.2025.50,
  author =	{Folkertsma, Marten and Mertz, Ian and Speelman, Florian and Tupker, Quinten},
  title =	{{Fully Characterizing Lossy Catalytic Computation}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{50:1--50:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.50},
  URN =		{urn:nbn:de:0030-drops-226786},
  doi =		{10.4230/LIPIcs.ITCS.2025.50},
  annote =	{Keywords: Space complexity, catalytic computation, error-correcting codes}
}
Document
Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture

Authors: Jordi Weggemans, Marten Folkertsma, and Chris Cade

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
We study "Merlinized" versions of the recently defined Guided Local Hamiltonian problem, which we call "Guidable Local Hamiltonian" problems. Unlike their guided counterparts, these problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists. We consider in particular two classes of guiding states: those that can be prepared efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically evaluatable, for which it is possible to efficiently compute expectation values of local observables classically. We show that guidable local Hamiltonian problems for both classes of guiding states are QCMA-complete in the inverse-polynomial precision setting, but lie within NP (or NqP) in the constant precision regime when the guiding state is classically evaluatable. Our completeness results show that, from a complexity-theoretic perspective, classical Ansätze selected by classical heuristics are just as powerful as quantum Ansätze prepared by quantum heuristics, as long as one has access to quantum phase estimation. In relation to the quantum PCP conjecture, we (i) define a complexity class capturing quantum-classical probabilistically checkable proof systems and show that it is contained in BQP^NP[1] for constant proof queries; (ii) give a no-go result on "dequantizing" the known quantum reduction which maps a QPCP-verification circuit to a local Hamiltonian with constant promise gap; (iii) give several no-go results for the existence of quantum gap amplification procedures that preserve certain ground state properties; and (iv) propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results can be directly modified to obtain similar results for the class MA.

Cite as

Jordi Weggemans, Marten Folkertsma, and Chris Cade. Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{weggemans_et_al:LIPIcs.TQC.2024.10,
  author =	{Weggemans, Jordi and Folkertsma, Marten and Cade, Chris},
  title =	{{Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.10},
  URN =		{urn:nbn:de:0030-drops-206804},
  doi =		{10.4230/LIPIcs.TQC.2024.10},
  annote =	{Keywords: Quantum complexity theory, local Hamiltonian problem, quantum state ansatzes, QCMA, quantum PCP conjecture}
}
Document
Track A: Algorithms, Complexity and Games
Improved Hardness Results for the Guided Local Hamiltonian Problem

Authors: Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa, François Le Gall, Tomoyuki Morimae, and Jordi Weggemans

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry. In order to further investigate its complexity and the potential of quantum algorithms for quantum chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall showed quantum advantage (more precisely, BQP-completeness) for GLH with 6-local Hamiltonians when the guiding state has fidelity (inverse-polynomially) close to 1/2 with a ground state. In this paper, we optimally improve both the locality and the fidelity parameter: we show that the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians instead. Those make further steps towards establishing practical quantum advantage in quantum chemistry.

Cite as

Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa, François Le Gall, Tomoyuki Morimae, and Jordi Weggemans. Improved Hardness Results for the Guided Local Hamiltonian Problem. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cade_et_al:LIPIcs.ICALP.2023.32,
  author =	{Cade, Chris and Folkertsma, Marten and Gharibian, Sevag and Hayakawa, Ryu and Le Gall, Fran\c{c}ois and Morimae, Tomoyuki and Weggemans, Jordi},
  title =	{{Improved Hardness Results for the Guided Local Hamiltonian Problem}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.32},
  URN =		{urn:nbn:de:0030-drops-180840},
  doi =		{10.4230/LIPIcs.ICALP.2023.32},
  annote =	{Keywords: Quantum computing, Quantum advantage, Quantum Chemistry, Guided Local Hamiltonian Problem}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail