Search Results

Documents authored by Fostier, Jan


Document
b-move: Faster Bidirectional Character Extensions in a Run-Length Compressed Index

Authors: Lore Depuydt, Luca Renders, Simon Van de Vyver, Lennart Veys, Travis Gagie, and Jan Fostier

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Due to the increasing availability of high-quality genome sequences, pan-genomes are gradually replacing single consensus reference genomes in many bioinformatics pipelines to better capture genetic diversity. Traditional bioinformatics tools using the FM-index face memory limitations with such large genome collections. Recent advancements in run-length compressed indices like Gagie et al.’s r-index and Nishimoto and Tabei’s move structure, alleviate memory constraints but focus primarily on backward search for MEM-finding. Arakawa et al.’s br-index initiates complete approximate pattern matching using bidirectional search in run-length compressed space, but with significant computational overhead due to complex memory access patterns. We introduce b-move, a novel bidirectional extension of the move structure, enabling fast, cache-efficient bidirectional character extensions in run-length compressed space. It achieves bidirectional character extensions up to 8 times faster than the br-index, closing the performance gap with FM-index-based alternatives, while maintaining the br-index’s favorable memory characteristics. For example, all available complete E. coli genomes on NCBI’s RefSeq collection can be compiled into a b-move index that fits into the RAM of a typical laptop. Thus, b-move proves practical and scalable for pan-genome indexing and querying. We provide a C++ implementation of b-move, supporting efficient lossless approximate pattern matching including locate functionality, available at https://github.com/biointec/b-move under the AGPL-3.0 license.

Cite as

Lore Depuydt, Luca Renders, Simon Van de Vyver, Lennart Veys, Travis Gagie, and Jan Fostier. b-move: Faster Bidirectional Character Extensions in a Run-Length Compressed Index. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{depuydt_et_al:LIPIcs.WABI.2024.10,
  author =	{Depuydt, Lore and Renders, Luca and Van de Vyver, Simon and Veys, Lennart and Gagie, Travis and Fostier, Jan},
  title =	{{b-move: Faster Bidirectional Character Extensions in a Run-Length Compressed Index}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.10},
  URN =		{urn:nbn:de:0030-drops-206546},
  doi =		{10.4230/LIPIcs.WABI.2024.10},
  annote =	{Keywords: Pan-genomics, FM-index, r-index, Move Structure, Bidirectional Search, Approximate Pattern Matching, Lossless Alignment, Cache Efficiency}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail