Published in: LIPIcs, Volume 359, 36th International Symposium on Algorithms and Computation (ISAAC 2025)
Janosch Fuchs, Rin Saito, Tatsuhiro Suga, Takahiro Suzuki, and Yuma Tamura. Coloring Reconfiguration Under Color Swapping. In 36th International Symposium on Algorithms and Computation (ISAAC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 359, pp. 33:1-33:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{fuchs_et_al:LIPIcs.ISAAC.2025.33,
author = {Fuchs, Janosch and Saito, Rin and Suga, Tatsuhiro and Suzuki, Takahiro and Tamura, Yuma},
title = {{Coloring Reconfiguration Under Color Swapping}},
booktitle = {36th International Symposium on Algorithms and Computation (ISAAC 2025)},
pages = {33:1--33:21},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-408-6},
ISSN = {1868-8969},
year = {2025},
volume = {359},
editor = {Chen, Ho-Lin and Hon, Wing-Kai and Tsai, Meng-Tsung},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2025.33},
URN = {urn:nbn:de:0030-drops-249411},
doi = {10.4230/LIPIcs.ISAAC.2025.33},
annote = {Keywords: Combinatorial reconfiguration, graph coloring, PSPACE-complete, graph algorithm}
}
Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)
Janosch Fuchs and Philip Whittington. The 2-Attractor Problem Is NP-Complete. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 35:1-35:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{fuchs_et_al:LIPIcs.STACS.2024.35,
author = {Fuchs, Janosch and Whittington, Philip},
title = {{The 2-Attractor Problem Is NP-Complete}},
booktitle = {41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
pages = {35:1--35:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-311-9},
ISSN = {1868-8969},
year = {2024},
volume = {289},
editor = {Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.35},
URN = {urn:nbn:de:0030-drops-197457},
doi = {10.4230/LIPIcs.STACS.2024.35},
annote = {Keywords: String attractors, dictionary compression, computational complexity}
}
Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)
Jan Dreier, Janosch Fuchs, Tim A. Hartmann, Philipp Kuinke, Peter Rossmanith, Bjoern Tauer, and Hung-Lung Wang. The Complexity of Packing Edge-Disjoint Paths. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{dreier_et_al:LIPIcs.IPEC.2019.10,
author = {Dreier, Jan and Fuchs, Janosch and Hartmann, Tim A. and Kuinke, Philipp and Rossmanith, Peter and Tauer, Bjoern and Wang, Hung-Lung},
title = {{The Complexity of Packing Edge-Disjoint Paths}},
booktitle = {14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
pages = {10:1--10:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-129-0},
ISSN = {1868-8969},
year = {2019},
volume = {148},
editor = {Jansen, Bart M. P. and Telle, Jan Arne},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.10},
URN = {urn:nbn:de:0030-drops-114710},
doi = {10.4230/LIPIcs.IPEC.2019.10},
annote = {Keywords: parameterized complexity, embedding, packing, covering, Hamiltonian path, unary binpacking, path-perfect graphs}
}