Search Results

Documents authored by Gasparovic, Ellen


Document
Vietoris-Rips and Cech Complexes of Metric Gluings

Authors: Michal Adamaszek, Henry Adams, Ellen Gasparovic, Maria Gommel, Emilie Purvine, Radmila Sazdanovic, Bei Wang, Yusu Wang, and Lori Ziegelmeier

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We study Vietoris-Rips and Cech complexes of metric wedge sums and metric gluings. We show that the Vietoris-Rips (resp. Cech) complex of a wedge sum, equipped with a natural metric, is homotopy equivalent to the wedge sum of the Vietoris-Rips (resp. Cech) complexes. We also provide generalizations for certain metric gluings, i.e. when two metric spaces are glued together along a common isometric subset. As our main example, we deduce the homotopy type of the Vietoris-Rips complex of two metric graphs glued together along a sufficiently short path. As a result, we can describe the persistent homology, in all homological dimensions, of the Vietoris-Rips complexes of a wide class of metric graphs.

Cite as

Michal Adamaszek, Henry Adams, Ellen Gasparovic, Maria Gommel, Emilie Purvine, Radmila Sazdanovic, Bei Wang, Yusu Wang, and Lori Ziegelmeier. Vietoris-Rips and Cech Complexes of Metric Gluings. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{adamaszek_et_al:LIPIcs.SoCG.2018.3,
  author =	{Adamaszek, Michal and Adams, Henry and Gasparovic, Ellen and Gommel, Maria and Purvine, Emilie and Sazdanovic, Radmila and Wang, Bei and Wang, Yusu and Ziegelmeier, Lori},
  title =	{{Vietoris-Rips and Cech Complexes of Metric Gluings}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.3},
  URN =		{urn:nbn:de:0030-drops-87162},
  doi =		{10.4230/LIPIcs.SoCG.2018.3},
  annote =	{Keywords: Vietoris-Rips and Cech complexes, metric space gluings and wedge sums, metric graphs, persistent homology}
}
Document
Geometric Models for Musical Audio Data

Authors: Paul Bendich, Ellen Gasparovic, John Harer, and Christopher Tralie

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
We study the geometry of sliding window embeddings of audio features that summarize perceptual information about audio, including its pitch and timbre. These embeddings can be viewed as point clouds in high dimensions, and we add structure to the point clouds using a cover tree with adaptive thresholds based on multi-scale local principal component analysis to automatically assign points to clusters. We connect neighboring clusters in a scaffolding graph, and we use knowledge of stratified space structure to refine our estimates of dimension in each cluster, demonstrating in our music applications that choruses and verses have higher dimensional structure, while transitions between them are lower dimensional. We showcase our technique with an interactive web-based application powered by Javascript and WebGL which plays music synchronized with a principal component analysis embedding of the point cloud down to 3D. We also render the clusters and the scaffolding on top of this projection to visualize the transitions between different sections of the music.

Cite as

Paul Bendich, Ellen Gasparovic, John Harer, and Christopher Tralie. Geometric Models for Musical Audio Data. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 65:1-65:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bendich_et_al:LIPIcs.SoCG.2016.65,
  author =	{Bendich, Paul and Gasparovic, Ellen and Harer, John and Tralie, Christopher},
  title =	{{Geometric Models for Musical Audio Data}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{65:1--65:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.65},
  URN =		{urn:nbn:de:0030-drops-59577},
  doi =		{10.4230/LIPIcs.SoCG.2016.65},
  annote =	{Keywords: Geometric Models, Audio Analysis, High Dimensional Data Analysis, Stratified Space Models}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail