Search Results

Documents authored by Gheissari, Reza


Document
RANDOM
Sampling from Potts on Random Graphs of Unbounded Degree via Random-Cluster Dynamics

Authors: Antonio Blanca and Reza Gheissari

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability p ∈ (0,1) and a cluster weight q > 0. We establish that for every q ≥ 1, the random-cluster Glauber dynamics mixes in optimal Θ(nlog n) steps on n-vertex random graphs having a prescribed degree sequence with bounded average branching γ throughout the full high-temperature uniqueness regime p < p_u(q,γ). The family of random graph models we consider includes the Erdős-Rényi random graph G(n,γ/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on Erdős-Rényi random graphs for the full tree uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the largest degree) for the Potts Glauber dynamics, in the same settings where our Θ(n log n) bounds for the random-cluster Glauber dynamics apply. This reveals a novel and significant computational advantage of random-cluster based algorithms for sampling from the Potts model at high temperatures.

Cite as

Antonio Blanca and Reza Gheissari. Sampling from Potts on Random Graphs of Unbounded Degree via Random-Cluster Dynamics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{blanca_et_al:LIPIcs.APPROX/RANDOM.2022.24,
  author =	{Blanca, Antonio and Gheissari, Reza},
  title =	{{Sampling from Potts on Random Graphs of Unbounded Degree via Random-Cluster Dynamics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.24},
  URN =		{urn:nbn:de:0030-drops-171463},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.24},
  annote =	{Keywords: Potts model, random-cluster model, random graphs, Markov chains, mixing time, tree uniqueness}
}
Document
RANDOM
Random-Cluster Dynamics in Z^2: Rapid Mixing with General Boundary Conditions

Authors: Antonio Blanca, Reza Gheissari, and Eric Vigoda

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
The random-cluster (FK) model is a key tool for the study of phase transitions and for the design of efficient Markov chain Monte Carlo (MCMC) sampling algorithms for the Ising/Potts model. It is well-known that in the high-temperature region beta<beta_c(q) of the q-state Ising/Potts model on an n x n box Lambda_n of the integer lattice Z^2, spin correlations decay exponentially fast; this property holds even arbitrarily close to the boundary of Lambda_n and uniformly over all boundary conditions. A direct consequence of this property is that the corresponding single-site update Markov chain, known as the Glauber dynamics, mixes in optimal O(n^2 log{n}) steps on Lambda_{n} for all choices of boundary conditions. We study the effect of boundary conditions on the FK-dynamics, the analogous Glauber dynamics for the random-cluster model. On Lambda_n the random-cluster model with parameters (p,q) has a sharp phase transition at p = p_c(q). Unlike the Ising/Potts model, the random-cluster model has non-local interactions which can be forced by boundary conditions: external wirings of boundary vertices of Lambda_n. We consider the broad and natural class of boundary conditions that are realizable as a configuration on Z^2 \ Lambda_n. Such boundary conditions can have many macroscopic wirings and impose long-range correlations even at very high temperatures (p << p_c(q)). In this paper, we prove that when q>1 and p != p_c(q) the mixing time of the FK-dynamics is polynomial in n for every realizable boundary condition. Previously, for boundary conditions that do not carry long-range information (namely wired and free), Blanca and Sinclair (2017) had proved that the FK-dynamics in the same setting mixes in optimal O(n^2 log n) time. To illustrate the difficulties introduced by general boundary conditions, we also construct a class of non-realizable boundary conditions that induce slow (stretched-exponential) convergence at high temperatures.

Cite as

Antonio Blanca, Reza Gheissari, and Eric Vigoda. Random-Cluster Dynamics in Z^2: Rapid Mixing with General Boundary Conditions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 67:1-67:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{blanca_et_al:LIPIcs.APPROX-RANDOM.2019.67,
  author =	{Blanca, Antonio and Gheissari, Reza and Vigoda, Eric},
  title =	{{Random-Cluster Dynamics in Z^2: Rapid Mixing with General Boundary Conditions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{67:1--67:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.67},
  URN =		{urn:nbn:de:0030-drops-112827},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.67},
  annote =	{Keywords: Markov chain, mixing time, random-cluster model, Glauber dynamics, spatial mixing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail