Search Results

Documents authored by Grewal, Sabee


Document
The Entangled Quantum Polynomial Hierarchy Collapses

Authors: Sabee Grewal and Justin Yirka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We introduce the entangled quantum polynomial hierarchy, QEPH, as the class of problems that are efficiently verifiable given alternating quantum proofs that may be entangled with each other. We prove QEPH collapses to its second level. In fact, we show that a polynomial number of alternations collapses to just two. As a consequence, QEPH = QRG(1), the class of problems having one-turn quantum refereed games, which is known to be contained in PSPACE. This is in contrast to the unentangled quantum polynomial hierarchy, QPH, which contains QMA(2). We also introduce DistributionQCPH, a generalization of the quantum-classical polynomial hierarchy QCPH where the provers send probability distributions over strings (instead of strings). We prove DistributionQCPH = QCPH, suggesting that only quantum superposition (not classical probability) increases the computational power of these hierarchies. To prove this equality, we generalize a game-theoretic result of Lipton and Young (1994) which says that, without loss of generality, the provers can send uniform distributions over a polynomial-size support. We also prove the analogous result for the polynomial hierarchy, i.e., DistributionPH = PH. Finally, we show that PH and QCPH are contained in QPH, resolving an open question of Gharibian et al. (2022).

Cite as

Sabee Grewal and Justin Yirka. The Entangled Quantum Polynomial Hierarchy Collapses. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grewal_et_al:LIPIcs.CCC.2024.6,
  author =	{Grewal, Sabee and Yirka, Justin},
  title =	{{The Entangled Quantum Polynomial Hierarchy Collapses}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.6},
  URN =		{urn:nbn:de:0030-drops-204028},
  doi =		{10.4230/LIPIcs.CCC.2024.6},
  annote =	{Keywords: Polynomial hierarchy, Entangled proofs, Correlated proofs, Minimax}
}
Document
Efficient Tomography of Non-Interacting-Fermion States

Authors: Scott Aaronson and Sabee Grewal

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We give an efficient algorithm that learns a non-interacting-fermion state, given copies of the state. For a system of n non-interacting fermions and m modes, we show that O(m³ n² log(1/δ) / ε⁴) copies of the input state and O(m⁴ n² log(1/δ)/ ε⁴) time are sufficient to learn the state to trace distance at most ε with probability at least 1 - δ. Our algorithm empirically estimates one-mode correlations in O(m) different measurement bases and uses them to reconstruct a succinct description of the entire state efficiently.

Cite as

Scott Aaronson and Sabee Grewal. Efficient Tomography of Non-Interacting-Fermion States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.TQC.2023.12,
  author =	{Aaronson, Scott and Grewal, Sabee},
  title =	{{Efficient Tomography of Non-Interacting-Fermion States}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.12},
  URN =		{urn:nbn:de:0030-drops-183222},
  doi =		{10.4230/LIPIcs.TQC.2023.12},
  annote =	{Keywords: free-fermions, Gaussian fermions, non-interacting fermions, quantum state tomography, efficient tomography}
}
Document
Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom

Authors: Sabee Grewal, Vishnu Iyer, William Kretschmer, and Daniel Liang

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We show that quantum states with "low stabilizer complexity" can be efficiently distinguished from Haar-random. Specifically, given an n-qubit pure state |ψ⟩, we give an efficient algorithm that distinguishes whether |ψ⟩ is (i) Haar-random or (ii) a state with stabilizer fidelity at least 1/k (i.e., has fidelity at least 1/k with some stabilizer state), promised that one of these is the case. With black-box access to |ψ⟩, our algorithm uses O(k^{12} log(1/δ)) copies of |ψ⟩ and O(n k^{12} log(1/δ)) time to succeed with probability at least 1-δ, and, with access to a state preparation unitary for |ψ⟩ (and its inverse), O(k³ log(1/δ)) queries and O(n k³ log(1/δ)) time suffice. As a corollary, we prove that ω(log(n)) T-gates are necessary for any Clifford+T circuit to prepare computationally pseudorandom quantum states, a first-of-its-kind lower bound.

Cite as

Sabee Grewal, Vishnu Iyer, William Kretschmer, and Daniel Liang. Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 64:1-64:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{grewal_et_al:LIPIcs.ITCS.2023.64,
  author =	{Grewal, Sabee and Iyer, Vishnu and Kretschmer, William and Liang, Daniel},
  title =	{{Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{64:1--64:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.64},
  URN =		{urn:nbn:de:0030-drops-175670},
  doi =		{10.4230/LIPIcs.ITCS.2023.64},
  annote =	{Keywords: Pseudorandom quantum states, Clifford + T, Haar random, Bell sampling, stabilizer formalism, stabilizer extent, stabilizer fidelity, learning theory, complexity theory}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail