Search Results

Documents authored by Grizzell, Elise


Document
Domain-Based Nucleic-Acid Minimum Free Energy: Algorithmic Hardness and Parameterized Bounds

Authors: Erik D. Demaine, Timothy Gomez, Elise Grizzell, Markus Hecher, Jayson Lynch, Robert Schweller, Ahmed Shalaby, and Damien Woods

Published in: LIPIcs, Volume 314, 30th International Conference on DNA Computing and Molecular Programming (DNA 30) (2024)


Abstract
Molecular programmers and nanostructure engineers use domain-level design to abstract away messy DNA/RNA sequence, chemical and geometric details. Such domain-level abstractions are enforced by sequence design principles and provide a key principle that allows scaling up of complex multistranded DNA/RNA programs and structures. Determining the most favoured secondary structure, or Minimum Free Energy (MFE), of a set of strands, is typically studied at the sequence level but has seen limited domain-level work. We analyse the computational complexity of MFE for multistranded systems in a simple setting were we allow only 1 or 2 domains per strand. On the one hand, with 2-domain strands, we find that the MFE decision problem is NP-complete, even without pseudoknots, and requires exponential time algorithms assuming SAT does. On the other hand, in the simplest case of 1-domain strands there are efficient MFE algorithms for various binding modes. However, even in this single-domain case, MFE is P-hard for promiscuous binding, where one domain may bind to multiple as experimentally used by Nikitin [Nat Chem., 2023], which in turn implies that strands consisting of a single domain efficiently implement arbitrary Boolean circuits.

Cite as

Erik D. Demaine, Timothy Gomez, Elise Grizzell, Markus Hecher, Jayson Lynch, Robert Schweller, Ahmed Shalaby, and Damien Woods. Domain-Based Nucleic-Acid Minimum Free Energy: Algorithmic Hardness and Parameterized Bounds. In 30th International Conference on DNA Computing and Molecular Programming (DNA 30). Leibniz International Proceedings in Informatics (LIPIcs), Volume 314, pp. 2:1-2:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.DNA.30.2,
  author =	{Demaine, Erik D. and Gomez, Timothy and Grizzell, Elise and Hecher, Markus and Lynch, Jayson and Schweller, Robert and Shalaby, Ahmed and Woods, Damien},
  title =	{{Domain-Based Nucleic-Acid Minimum Free Energy: Algorithmic Hardness and Parameterized Bounds}},
  booktitle =	{30th International Conference on DNA Computing and Molecular Programming (DNA 30)},
  pages =	{2:1--2:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-344-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{314},
  editor =	{Seki, Shinnosuke and Stewart, Jaimie Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.30.2},
  URN =		{urn:nbn:de:0030-drops-209304},
  doi =		{10.4230/LIPIcs.DNA.30.2},
  annote =	{Keywords: Domain-based DNA designs, minimum free energy, efficient algorithms, NP-hard, P-hard, NC, fixed-parameter tractable}
}
Document
Complexity of Reconfiguration in Surface Chemical Reaction Networks

Authors: Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, and Tim Wylie

Published in: LIPIcs, Volume 276, 29th International Conference on DNA Computing and Molecular Programming (DNA 29) (2023)


Abstract
We analyze the computational complexity of basic reconfiguration problems for the recently introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species nondeterministically transform into a different ordered pair of species according to a predefined set of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to the simulation of sCRNs are whether a given configuration of molecules can ever transform into another given configuration, and whether a given cell can ever contain a given species, given a set of transition rules. We show that these problems can be solved in polynomial time, are NP-complete, or are PSPACE-complete in a variety of different settings, including when adjacent species just swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few distinct species (2 or 3).

Cite as

Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, and Tim Wylie. Complexity of Reconfiguration in Surface Chemical Reaction Networks. In 29th International Conference on DNA Computing and Molecular Programming (DNA 29). Leibniz International Proceedings in Informatics (LIPIcs), Volume 276, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alaniz_et_al:LIPIcs.DNA.29.10,
  author =	{Alaniz, Robert M. and Brunner, Josh and Coulombe, Michael and Demaine, Erik D. and Diomidova, Jenny and Gomez, Timothy and Grizzell, Elise and Knobel, Ryan and Lynch, Jayson and Rodriguez, Andrew and Schweller, Robert and Wylie, Tim},
  title =	{{Complexity of Reconfiguration in Surface Chemical Reaction Networks}},
  booktitle =	{29th International Conference on DNA Computing and Molecular Programming (DNA 29)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-297-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{276},
  editor =	{Chen, Ho-Lin and Evans, Constantine G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.29.10},
  URN =		{urn:nbn:de:0030-drops-187936},
  doi =		{10.4230/LIPIcs.DNA.29.10},
  annote =	{Keywords: Chemical Reaction Networks, reconfiguration, hardness}
}
Document
Covert Computation in the Abstract Tile-Assembly Model

Authors: Robert M. Alaniz, David Caballero, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, and Tim Wylie

Published in: LIPIcs, Volume 257, 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)


Abstract
There have been many advances in molecular computation that offer benefits such as targeted drug delivery, nanoscale mapping, and improved classification of nanoscale organisms. This power led to recent work exploring privacy in the computation, specifically, covert computation in self-assembling circuits. Here, we prove several important results related to the concept of a hidden computation in the most well-known model of self-assembly, the Abstract Tile-Assembly Model (aTAM). We show that in 2D, surprisingly, the model is capable of covert computation, but only with an exponential-sized assembly. We also show that the model is capable of covert computation with polynomial-sized assemblies with only one step in the third dimension (just-barely 3D). Finally, we investigate types of functions that can be covertly computed as members of P/Poly.

Cite as

Robert M. Alaniz, David Caballero, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, and Tim Wylie. Covert Computation in the Abstract Tile-Assembly Model. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{alaniz_et_al:LIPIcs.SAND.2023.12,
  author =	{Alaniz, Robert M. and Caballero, David and Gomez, Timothy and Grizzell, Elise and Rodriguez, Andrew and Schweller, Robert and Wylie, Tim},
  title =	{{Covert Computation in the Abstract Tile-Assembly Model}},
  booktitle =	{2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-275-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{257},
  editor =	{Doty, David and Spirakis, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2023.12},
  URN =		{urn:nbn:de:0030-drops-179482},
  doi =		{10.4230/LIPIcs.SAND.2023.12},
  annote =	{Keywords: self-assembly, covert computation, atam}
}
Document
Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

Authors: Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, Armando Tenorio, and Tim Wylie

Published in: LIPIcs, Volume 221, 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)


Abstract
Tile Automata is a recently defined model of self-assembly that borrows many concepts from cellular automata to create active self-assembling systems where changes may be occurring within an assembly without requiring attachment. This model has been shown to be powerful, but many fundamental questions have yet to be explored. Here, we study the state complexity of assembling n × n squares in seeded Tile Automata systems where growth starts from a seed and tiles may attach one at a time, similar to the abstract Tile Assembly Model. We provide optimal bounds for three classes of seeded Tile Automata systems (all without detachment), which vary in the amount of complexity allowed in the transition rules. We show that, in general, seeded Tile Automata systems require Θ(log^{1/4} n) states. For Single-Transition systems, where only one state may change in a transition rule, we show a bound of Θ(log^{1/3} n), and for deterministic systems, where each pair of states may only have one associated transition rule, a bound of Θ(({log n}/{log log n})^{1/2}).

Cite as

Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, Armando Tenorio, and Tim Wylie. Building Squares with Optimal State Complexity in Restricted Active Self-Assembly. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 221, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{alaniz_et_al:LIPIcs.SAND.2022.6,
  author =	{Alaniz, Robert M. and Caballero, David and Cirlos, Sonya C. and Gomez, Timothy and Grizzell, Elise and Rodriguez, Andrew and Schweller, Robert and Tenorio, Armando and Wylie, Tim},
  title =	{{Building Squares with Optimal State Complexity in Restricted Active Self-Assembly}},
  booktitle =	{1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-224-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{221},
  editor =	{Aspnes, James and Michail, Othon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2022.6},
  URN =		{urn:nbn:de:0030-drops-159482},
  doi =		{10.4230/LIPIcs.SAND.2022.6},
  annote =	{Keywords: Active Self-Assembly, State Complexity, Tile Automata}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail