Search Results

Documents authored by Grossman, Tomer


Document
Track A: Algorithms, Complexity and Games
On the Instance Optimality of Detecting Collisions and Subgraphs

Authors: Omri Ben-Eliezer, Tomer Grossman, and Moni Naor

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Suppose you are given a function f: [n] → [n] via (black-box) query access to the function. You are looking to find something local, like a collision (a pair x ≠ y s.t. f(x) = f(y)). The question is whether knowing the "shape" of the function helps you or not (by shape we mean that some permutation of the function is known). Formally, we investigate the unlabeled instance optimality of substructure detection problems in graphs and functions. A problem is g(n)-instance optimal if it admits an algorithm A satisfying that for any possible input, the (randomized) query complexity of A is at most g(n) times larger than the query complexity of any algorithm A' which solves the same problem while holding an unlabeled copy of the input (i.e., any A' that "knows the structure of the input"). Our results point to a trichotomy of unlabeled instance optimality among substructure detection problems in graphs and functions: - A few very simple properties have an O(1)-instance optimal algorithm. - Most properties of graphs and functions, with examples such as containing a fixed point or a 3-collision in functions, or a triangle in graphs, are n^{c}-far from instance optimal for some constant c > 0. - The problems of collision detection in functions and finding a claw in a graph serve as a middle ground between the two regimes. We show that these two properties are not Ω(log n)-instance optimal, and conjecture that this bound is tight. We provide evidence towards this conjecture, by proving that finding a claw in a graph is O(log(n))-instance optimal among all input graphs for which the query complexity of an algorithm holding an unlabeled certificate is O(√{n/(log n)}).

Cite as

Omri Ben-Eliezer, Tomer Grossman, and Moni Naor. On the Instance Optimality of Detecting Collisions and Subgraphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{beneliezer_et_al:LIPIcs.ICALP.2025.23,
  author =	{Ben-Eliezer, Omri and Grossman, Tomer and Naor, Moni},
  title =	{{On the Instance Optimality of Detecting Collisions and Subgraphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.23},
  URN =		{urn:nbn:de:0030-drops-234002},
  doi =		{10.4230/LIPIcs.ICALP.2025.23},
  annote =	{Keywords: instance optimality, instance complexity, unlabeled certificate, subgraph detection, collision detection}
}
Document
From Donkeys to Kings in Tournaments

Authors: Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A tournament is an orientation of a complete graph. A vertex that can reach every other vertex within two steps is called a king. We study the complexity of finding k kings in a tournament graph. We show that the randomized query complexity of finding k ≤ 3 kings is O(n), and for the deterministic case it takes the same amount of queries (up to a constant) as finding a single king (the best known deterministic algorithm makes O(n^{3/2}) queries). On the other hand, we show that finding k ≥ 4 kings requires Ω(n²) queries, even in the randomized case. We consider the RAM model for k ≥ 4. We show an algorithm that finds k kings in time O(kn²), which is optimal for constant values of k. Alternatively, one can also find k ≥ 4 kings in time n^{ω} (the time for matrix multiplication). We provide evidence that this is optimal for large k by suggesting a fine-grained reduction from a variant of the triangle detection problem.

Cite as

Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon. From Donkeys to Kings in Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2024.3,
  author =	{Abboud, Amir and Grossman, Tomer and Naor, Moni and Solomon, Tomer},
  title =	{{From Donkeys to Kings in Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.3},
  URN =		{urn:nbn:de:0030-drops-210740},
  doi =		{10.4230/LIPIcs.ESA.2024.3},
  annote =	{Keywords: Tournament Graphs, Kings, Query Complexity, Fine Grained Complexity}
}
Document
Instance Complexity and Unlabeled Certificates in the Decision Tree Model

Authors: Tomer Grossman, Ilan Komargodski, and Moni Naor

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Instance complexity is a measure of goodness of an algorithm in which the performance of one algorithm is compared to others per input. This is in sharp contrast to worst-case and average-case complexity measures, where the performance is compared either on the worst input or on an average one, respectively. We initiate the systematic study of instance complexity and optimality in the query model (a.k.a. the decision tree model). In this model, instance optimality of an algorithm for computing a function is the requirement that the complexity of an algorithm on any input is at most a constant factor larger than the complexity of the best correct algorithm. That is we compare the decision tree to one that receives a certificate and its complexity is measured only if the certificate is correct (but correctness should hold on any input). We study both deterministic and randomized decision trees and provide various characterizations and barriers for more general results. We introduce a new measure of complexity called unlabeled-certificate complexity, appropriate for graph properties and other functions with symmetries, where only information about the structure of the graph is known to the competing algorithm. More precisely, the certificate is some permutation of the input (rather than the input itself) and the correctness should be maintained even if the certificate is wrong. First we show that such an unlabeled certificate is sometimes very helpful in the worst-case. We then study instance optimality with respect to this measure of complexity, where an algorithm is said to be instance optimal if for every input it performs roughly as well as the best algorithm that is given an unlabeled certificate (but is correct on every input). We show that instance optimality depends on the group of permutations in consideration. Our proofs rely on techniques from hypothesis testing and analysis of random graphs.

Cite as

Tomer Grossman, Ilan Komargodski, and Moni Naor. Instance Complexity and Unlabeled Certificates in the Decision Tree Model. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 56:1-56:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{grossman_et_al:LIPIcs.ITCS.2020.56,
  author =	{Grossman, Tomer and Komargodski, Ilan and Naor, Moni},
  title =	{{Instance Complexity and Unlabeled Certificates in the Decision Tree Model}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{56:1--56:38},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.56},
  URN =		{urn:nbn:de:0030-drops-117418},
  doi =		{10.4230/LIPIcs.ITCS.2020.56},
  annote =	{Keywords: decision tree complexity, instance complexity, instance optimality, query complexity, unlabeled certificates}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail