Document

**Published in:** LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)

An arithmetic formula is an arithmetic circuit where each gate has fan-out one. An arithmetic read-once formula (ROF in short) is an arithmetic formula where each input variable labels at most one leaf. In this paper we present several efficient blackbox polynomial identity testing (PIT) algorithms for some classes of polynomials related to read-once formulas. Namely, for polynomial of the form:
- f = Φ_1 ⋅ … ⋅ Φ_m + Ψ₁ ⋅ … ⋅ Ψ_r, where Φ_i,Ψ_j are ROFs for every i ∈ [m], j ∈ [r].
- f = Φ_1^{e₁} + Φ₂^{e₂} + Φ₃^{e₃}, where each Φ_i is an ROF and e_i-s are arbitrary positive integers.
Earlier, only a whitebox polynomial-time algorithm was known for the former class by Mahajan, Rao and Sreenivasaiah (Algorithmica 2016).
In the same paper, they also posed an open problem to come up with an efficient PIT algorithm for the class of polynomials of the form f = Φ_1^{e₁} + Φ_2^{e₂} + … + Φ_k^{e_k}, where each Φ_i is an ROF and k is some constant. Our second result answers this partially by giving a polynomial-time algorithm when k = 3. More generally, when each Φ₁,Φ₂,Φ₃ is a multilinear bounded-read formulae, we also give a quasi-polynomial-time blackbox PIT algorithm.
Our main technique relies on the hardness of representation approach introduced in Shpilka and Volkovich (Computational Complexity 2015). Specifically, we show hardness of representation for the resultant polynomial of two ROFs in our first result. For our second result, we lift hardness of representation for a sum of three ROFs to sum of their powers.

Pranav Bisht, Nikhil Gupta, and Ilya Volkovich. Towards Identity Testing for Sums of Products of Read-Once and Multilinear Bounded-Read Formulae. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bisht_et_al:LIPIcs.FSTTCS.2023.9, author = {Bisht, Pranav and Gupta, Nikhil and Volkovich, Ilya}, title = {{Towards Identity Testing for Sums of Products of Read-Once and Multilinear Bounded-Read Formulae}}, booktitle = {43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)}, pages = {9:1--9:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-304-1}, ISSN = {1868-8969}, year = {2023}, volume = {284}, editor = {Bouyer, Patricia and Srinivasan, Srikanth}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.9}, URN = {urn:nbn:de:0030-drops-193829}, doi = {10.4230/LIPIcs.FSTTCS.2023.9}, annote = {Keywords: Identity Testing, Derandomization, Bounded-Read Formulae, Arithmetic Formulas} }

Document

**Published in:** LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)

We show an Ω̃(n^2.5) lower bound for general depth four arithmetic circuits computing an explicit n-variate degree-Θ(n) multilinear polynomial over any field of characteristic zero. To our knowledge, and as stated in the survey [Amir Shpilka and Amir Yehudayoff, 2010], no super-quadratic lower bound was known for depth four circuits over fields of characteristic ≠ 2 before this work. The previous best lower bound is Ω̃(n^1.5) [Abhijat Sharma, 2017], which is a slight quantitative improvement over the roughly Ω(n^1.33) bound obtained by invoking the super-linear lower bound for constant depth circuits in [Ran Raz, 2010; Victor Shoup and Roman Smolensky, 1997].
Our lower bound proof follows the approach of the almost cubic lower bound for depth three circuits in [Neeraj Kayal et al., 2016] by replacing the shifted partials measure with a suitable variant of the projected shifted partials measure, but it differs from [Neeraj Kayal et al., 2016]’s proof at a crucial step - namely, the way "heavy" product gates are handled. Loosely speaking, a heavy product gate has a relatively high fan-in. Product gates of a depth three circuit compute products of affine forms, and so, it is easy to prune Θ(n) many heavy product gates by projecting the circuit to a low-dimensional affine subspace [Neeraj Kayal et al., 2016; Amir Shpilka and Avi Wigderson, 2001]. However, in a depth four circuit, the second (from the top) layer of product gates compute products of polynomials having arbitrary degree, and hence it was not clear how to prune such heavy product gates from the circuit. We show that heavy product gates can also be eliminated from a depth four circuit by projecting the circuit to a low-dimensional affine subspace, unless the heavy gates together account for Ω̃(n^2.5) size. This part of our argument is inspired by a well-known greedy approximation algorithm for the weighted set-cover problem.

Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 23:1-23:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.CCC.2020.23, author = {Gupta, Nikhil and Saha, Chandan and Thankey, Bhargav}, title = {{A Super-Quadratic Lower Bound for Depth Four Arithmetic Circuits}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {23:1--23:31}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.23}, URN = {urn:nbn:de:0030-drops-125757}, doi = {10.4230/LIPIcs.CCC.2020.23}, annote = {Keywords: depth four arithmetic circuits, Projected Shifted Partials, super-quadratic lower bound} }

Document

**Published in:** LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)

In a Nisan-Wigderson design polynomial (in short, a design polynomial), every pair of monomials share a few common variables. A useful example of such a polynomial, introduced in [Neeraj Kayal et al., 2014], is the following: NW_{d,k}({x}) = sum_{h in F_d[z], deg(h) <= k}{ prod_{i=0}^{d-1}{x_{i, h(i)}}}, where d is a prime, F_d is the finite field with d elements, and k << d. The degree of the gcd of every pair of monomials in NW_{d,k} is at most k. For concreteness, we fix k = ceil[sqrt{d}]. The family of polynomials NW := {NW_{d,k} : d is a prime} and close variants of it have been used as hard explicit polynomial families in several recent arithmetic circuit lower bound proofs. But, unlike the permanent, very little is known about the various structural and algorithmic/complexity aspects of NW beyond the fact that NW in VNP. Is NW_{d,k} characterized by its symmetries? Is it circuit-testable, i.e., given a circuit C can we check efficiently if C computes NW_{d,k}? What is the complexity of equivalence test for NW, i.e., given black-box access to a f in F[{x}], can we check efficiently if there exists an invertible linear transformation A such that f = NW_{d,k}(A * {x})? Characterization of polynomials by their symmetries plays a central role in the geometric complexity theory program. Here, we answer the first two questions and partially answer the third.
We show that NW_{d,k} is characterized by its group of symmetries over C, but not over R. We also show that NW_{d,k} is characterized by circuit identities which implies that NW_{d,k} is circuit-testable in randomized polynomial time. As another application of this characterization, we obtain the "flip theorem" for NW.
We give an efficient equivalence test for NW in the case where the transformation A is a block-diagonal permutation-scaling matrix. The design of this algorithm is facilitated by an almost complete understanding of the group of symmetries of NW_{d,k}: We show that if A is in the group of symmetries of NW_{d,k} then A = D * P, where D and P are diagonal and permutation matrices respectively. This is proved by completely characterizing the Lie algebra of NW_{d,k}, and using an interplay between the Hessian of NW_{d,k} and the evaluation dimension.

Nikhil Gupta and Chandan Saha. On the Symmetries of and Equivalence Test for Design Polynomials. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 53:1-53:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.MFCS.2019.53, author = {Gupta, Nikhil and Saha, Chandan}, title = {{On the Symmetries of and Equivalence Test for Design Polynomials}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {53:1--53:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.53}, URN = {urn:nbn:de:0030-drops-109979}, doi = {10.4230/LIPIcs.MFCS.2019.53}, annote = {Keywords: Nisan-Wigderson design polynomial, characterization by symmetries, Lie algebra, group of symmetries, circuit testability, flip theorem, equivalence test} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

The determinant polynomial Det_n(x) of degree n is the determinant of a n x n matrix of formal variables. A polynomial f is equivalent to Det_n(x) over a field F if there exists a A in GL(n^2,F) such that f = Det_n(A * x). Determinant equivalence test over F is the following algorithmic task: Given black-box access to a f in F[x], check if f is equivalent to Det_n(x) over F, and if so then output a transformation matrix A in GL(n^2,F). In (Kayal, STOC 2012), a randomized polynomial time determinant equivalence test was given over F = C. But, to our knowledge, the complexity of the problem over finite fields and over Q was not well understood.
In this work, we give a randomized poly(n,log |F|) time determinant equivalence test over finite fields F (under mild restrictions on the characteristic and size of F). Over Q, we give an efficient randomized reduction from factoring square-free integers to determinant equivalence test for quadratic forms (i.e. the n=2 case), assuming GRH. This shows that designing a polynomial-time determinant equivalence test over Q is a challenging task. Nevertheless, we show that determinant equivalence test over Q is decidable: For bounded n, there is a randomized polynomial-time determinant equivalence test over Q with access to an oracle for integer factoring. Moreover, for any n, there is a randomized polynomial-time algorithm that takes input black-box access to a f in Q[x] and if f is equivalent to Det_n over Q then it returns a A in GL(n^2,L) such that f = Det_n(A * x), where L is an extension field of Q and [L : Q] <= n.
The above algorithms over finite fields and over Q are obtained by giving a polynomial-time randomized reduction from determinant equivalence test to another problem, namely the full matrix algebra isomorphism problem. We also show a reduction in the converse direction which is efficient if n is bounded. These reductions, which hold over any F (under mild restrictions on the characteristic and size of F), establish a close connection between the complexity of the two problems. This then leads to our results via applications of known results on the full algebra isomorphism problem over finite fields (Rónyai, STOC 1987 and Rónyai, J. Symb. Comput. 1990) and over Q (Ivanyos {et al}., Journal of Algebra 2012 and Babai {et al}., Mathematics of Computation 1990).

Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant Equivalence Test over Finite Fields and over Q. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 62:1-62:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ICALP.2019.62, author = {Garg, Ankit and Gupta, Nikhil and Kayal, Neeraj and Saha, Chandan}, title = {{Determinant Equivalence Test over Finite Fields and over Q}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {62:1--62:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.62}, URN = {urn:nbn:de:0030-drops-106382}, doi = {10.4230/LIPIcs.ICALP.2019.62}, annote = {Keywords: Determinant equivalence test, full matrix algebra isomorphism, Lie algebra} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail