Search Results

Documents authored by Iliopoulos, Fotis


Document
RANDOM
A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Authors: David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser & Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for convergence, many other natural questions can be asked about algorithms; for instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?". These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.

Cite as

David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov. A New Notion of Commutativity for the Algorithmic Lovász Local Lemma. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{harris_et_al:LIPIcs.APPROX/RANDOM.2021.31,
  author =	{Harris, David G. and Iliopoulos, Fotis and Kolmogorov, Vladimir},
  title =	{{A New Notion of Commutativity for the Algorithmic Lov\'{a}sz Local Lemma}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.31},
  URN =		{urn:nbn:de:0030-drops-147244},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.31},
  annote =	{Keywords: Lov\'{a}sz Local Lemma, Resampling, Moser-Tardos algorithm, latin transversal, commutativity}
}
Document
RANDOM
Improved Bounds for Coloring Locally Sparse Hypergraphs

Authors: Fotis Iliopoulos

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We show that, for every k ≥ 2, every k-uniform hypergaph of degree Δ and girth at least 5 is efficiently (1+o(1))(k-1) (Δ / ln Δ)^{1/(k-1)}-list colorable. As an application we obtain the currently best deterministic algorithm for list-coloring random hypergraphs of bounded average degree.

Cite as

Fotis Iliopoulos. Improved Bounds for Coloring Locally Sparse Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 39:1-39:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{iliopoulos:LIPIcs.APPROX/RANDOM.2021.39,
  author =	{Iliopoulos, Fotis},
  title =	{{Improved Bounds for Coloring Locally Sparse Hypergraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{39:1--39:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.39},
  URN =		{urn:nbn:de:0030-drops-147328},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.39},
  annote =	{Keywords: hypergaph coloring, semi-random method, locally sparse, random hypergraphs}
}
Document
Commutative Algorithms Approximate the LLL-distribution

Authors: Fotis Iliopoulos

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
Following the groundbreaking Moser-Tardos algorithm for the Lovász Local Lemma (LLL), a series of works have exploited a key ingredient of the original analysis, the witness tree lemma, in order to: derive deterministic, parallel and distributed algorithms for the LLL, to estimate the entropy of the output distribution, to partially avoid bad events, to deal with super-polynomially many bad events, and even to devise new algorithmic frameworks. Meanwhile, a parallel line of work has established tools for analyzing stochastic local search algorithms motivated by the LLL that do not fall within the Moser-Tardos framework. Unfortunately, the aforementioned results do not transfer to these more general settings. Mainly, this is because the witness tree lemma, provably, does not longer hold. Here we prove that for commutative algorithms, a class recently introduced by Kolmogorov and which captures the vast majority of LLL applications, the witness tree lemma does hold. Armed with this fact, we extend the main result of Haeupler, Saha, and Srinivasan to commutative algorithms, establishing that the output of such algorithms well-approximates the LLL-distribution, i.e., the distribution obtained by conditioning on all bad events being avoided, and give several new applications. For example, we show that the recent algorithm of Molloy for list coloring number of sparse, triangle-free graphs can output exponential many list colorings of the input graph.

Cite as

Fotis Iliopoulos. Commutative Algorithms Approximate the LLL-distribution. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 44:1-44:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{iliopoulos:LIPIcs.APPROX-RANDOM.2018.44,
  author =	{Iliopoulos, Fotis},
  title =	{{Commutative Algorithms Approximate the LLL-distribution}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.44},
  URN =		{urn:nbn:de:0030-drops-94487},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.44},
  annote =	{Keywords: Lovasz Local Lemma, Local Search, Commutativity, LLL-distribution, Coloring Triangle-free Graphs}
}
Document
Stochastic Control via Entropy Compression

Authors: Dimitris Achlioptas, Fotis Iliopoulos, and Nikos Vlassis

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
Consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovász Local Lemma (LLL) can be seen as establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control is also possible in a noisy environment, where both the process of state-observation and the process of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new analysis where entropy plays a central role, both to measure the rate at which progress towards an acceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition in the noiseless case.

Cite as

Dimitris Achlioptas, Fotis Iliopoulos, and Nikos Vlassis. Stochastic Control via Entropy Compression. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 83:1-83:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{achlioptas_et_al:LIPIcs.ICALP.2017.83,
  author =	{Achlioptas, Dimitris and Iliopoulos, Fotis and Vlassis, Nikos},
  title =	{{Stochastic Control via Entropy Compression}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{83:1--83:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.83},
  URN =		{urn:nbn:de:0030-drops-74279},
  doi =		{10.4230/LIPIcs.ICALP.2017.83},
  annote =	{Keywords: Stochastic Control, Lovasz Local Lemma}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail