Search Results

Documents authored by Ivanov, Peter


Document
Pseudorandomness, Symmetry, Smoothing: I

Authors: Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that - achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. - have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. - rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.

Cite as

Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, Symmetry, Smoothing: I. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 18:1-18:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2024.18,
  author =	{Derksen, Harm and Ivanov, Peter and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Pseudorandomness, Symmetry, Smoothing: I}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{18:1--18:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.18},
  URN =		{urn:nbn:de:0030-drops-204144},
  doi =		{10.4230/LIPIcs.CCC.2024.18},
  annote =	{Keywords: pseudorandomness, k-wise uniform distributions, small-bias distributions, noise, symmetric tests, thresholds, Krawtchouk polynomials}
}
Document
On Correlation Bounds Against Polynomials

Authors: Peter Ivanov, Liam Pavlovic, and Emanuele Viola

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We study the fundamental challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over 𝔽₂. Our main contributions include: 1) In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their technique they established new correlation bounds for low-degree polynomials. They conjectured that their technique generalizes to higher degree polynomials as well. We give a counterexample to their conjecture, in fact ruling out weaker parameters and showing what they prove is essentially the best possible. 2) We propose a new approach for proving correlation bounds with the central "mod functions," consisting of two steps: (I) the polynomials that maximize correlation are symmetric and (II) symmetric polynomials have small correlation. Contrary to related results in the literature, we conjecture that (I) is true. We argue this approach is not affected by existing "barrier results." 3) We prove our conjecture for quadratic polynomials. Specifically, we determine the maximum possible correlation between quadratic polynomials modulo 2 and the functions (x_1,… ,x_n) → z^{∑ x_i} for any z on the complex unit circle, and show that it is achieved by symmetric polynomials. To obtain our results we develop a new proof technique: we express correlation in terms of directional derivatives and analyze it by slowly restricting the direction. 4) We make partial progress on the conjecture for cubic polynomials, in particular proving tight correlation bounds for cubic polynomials whose degree-3 part is symmetric.

Cite as

Peter Ivanov, Liam Pavlovic, and Emanuele Viola. On Correlation Bounds Against Polynomials. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 3:1-3:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ivanov_et_al:LIPIcs.CCC.2023.3,
  author =	{Ivanov, Peter and Pavlovic, Liam and Viola, Emanuele},
  title =	{{On Correlation Bounds Against Polynomials}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{3:1--3:35},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.3},
  URN =		{urn:nbn:de:0030-drops-182734},
  doi =		{10.4230/LIPIcs.CCC.2023.3},
  annote =	{Keywords: Correlation bounds, Polynomials}
}
Document
RANDOM
Affine Extractors and AC0-Parity

Authors: Xuangui Huang, Peter Ivanov, and Emanuele Viola

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study a simple and general template for constructing affine extractors by composing a linear transformation with resilient functions. Using this we show that good affine extractors can be computed by non-explicit circuits of various types, including AC0-Xor circuits: AC0 circuits with a layer of parity gates at the input. We also show that one-sided extractors can be computed by small DNF-Xor circuits, and separate these circuits from other well-studied classes. As a further motivation for studying DNF-Xor circuits we show that if they can approximate inner product then small AC0-Xor circuits can compute it exactly - a long-standing open problem.

Cite as

Xuangui Huang, Peter Ivanov, and Emanuele Viola. Affine Extractors and AC0-Parity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.APPROX/RANDOM.2022.9,
  author =	{Huang, Xuangui and Ivanov, Peter and Viola, Emanuele},
  title =	{{Affine Extractors and AC0-Parity}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{9:1--9:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.9},
  URN =		{urn:nbn:de:0030-drops-171313},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.9},
  annote =	{Keywords: affine extractor, resilient function, constant-depth circuit, parity gate, inner product}
}
Document
RANDOM
Fourier Growth of Structured 𝔽₂-Polynomials and Applications

Authors: Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele Viola

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We analyze the Fourier growth, i.e. the L₁ Fourier weight at level k (denoted L_{1,k}), of various well-studied classes of "structured" m F₂-polynomials. This study is motivated by applications in pseudorandomness, in particular recent results and conjectures due to [Chattopadhyay et al., 2019; Chattopadhyay et al., 2019; Eshan Chattopadhyay et al., 2020] which show that upper bounds on Fourier growth (even at level k = 2) give unconditional pseudorandom generators. Our main structural results on Fourier growth are as follows: - We show that any symmetric degree-d m F₂-polynomial p has L_{1,k}(p) ≤ Pr [p = 1] ⋅ O(d)^k. This quadratically strengthens an earlier bound that was implicit in [Omer Reingold et al., 2013]. - We show that any read-Δ degree-d m F₂-polynomial p has L_{1,k}(p) ≤ Pr [p = 1] ⋅ (k Δ d)^{O(k)}. - We establish a composition theorem which gives L_{1,k} bounds on disjoint compositions of functions that are closed under restrictions and admit L_{1,k} bounds. Finally, we apply the above structural results to obtain new unconditional pseudorandom generators and new correlation bounds for various classes of m F₂-polynomials.

Cite as

Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele Viola. Fourier Growth of Structured 𝔽₂-Polynomials and Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 53:1-53:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.APPROX/RANDOM.2021.53,
  author =	{B{\l}asiok, Jaros{\l}aw and Ivanov, Peter and Jin, Yaonan and Lee, Chin Ho and Servedio, Rocco A. and Viola, Emanuele},
  title =	{{Fourier Growth of Structured \mathbb{F}₂-Polynomials and Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{53:1--53:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.53},
  URN =		{urn:nbn:de:0030-drops-147462},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.53},
  annote =	{Keywords: Fourier analysis, Pseudorandomness, Fourier growth}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail