Search Results

Documents authored by Kothari, Robin


Document
No Quantum Speedup over Gradient Descent for Non-Smooth Convex Optimization

Authors: Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We study the first-order convex optimization problem, where we have black-box access to a (not necessarily smooth) function f:ℝⁿ → ℝ and its (sub)gradient. Our goal is to find an ε-approximate minimum of f starting from a point that is distance at most R from the true minimum. If f is G-Lipschitz, then the classic gradient descent algorithm solves this problem with O((GR/ε)²) queries. Importantly, the number of queries is independent of the dimension n and gradient descent is optimal in this regard: No deterministic or randomized algorithm can achieve better complexity that is still independent of the dimension n. In this paper we reprove the randomized lower bound of Ω((GR/ε)²) using a simpler argument than previous lower bounds. We then show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using O(GR/ε) quantum queries. We then show an improved lower bound against quantum algorithms using a different set of instances and establish our main result that in general even quantum algorithms need Ω((GR/ε)²) queries to solve the problem. Hence there is no quantum speedup over gradient descent for black-box first-order convex optimization without further assumptions on the function family.

Cite as

Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. No Quantum Speedup over Gradient Descent for Non-Smooth Convex Optimization. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 53:1-53:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ITCS.2021.53,
  author =	{Garg, Ankit and Kothari, Robin and Netrapalli, Praneeth and Sherif, Suhail},
  title =	{{No Quantum Speedup over Gradient Descent for Non-Smooth Convex Optimization}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{53:1--53:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.53},
  URN =		{urn:nbn:de:0030-drops-135921},
  doi =		{10.4230/LIPIcs.ITCS.2021.53},
  annote =	{Keywords: Quantum algorithms, Gradient descent, Convex optimization}
}
Document
RANDOM
When Is Amplification Necessary for Composition in Randomized Query Complexity?

Authors: Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Suppose we have randomized decision trees for an outer function f and an inner function g. The natural approach for obtaining a randomized decision tree for the composed function (f∘ gⁿ)(x¹,…,xⁿ) = f(g(x¹),…,g(xⁿ)) involves amplifying the success probability of the decision tree for g, so that a union bound can be used to bound the error probability over all the coordinates. The amplification introduces a logarithmic factor cost overhead. We study the question: When is this log factor necessary? We show that when the outer function is parity or majority, the log factor can be necessary, even for models that are more powerful than plain randomized decision trees. Our results are related to, but qualitatively strengthen in various ways, known results about decision trees with noisy inputs.

Cite as

Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson. When Is Amplification Necessary for Composition in Randomized Query Complexity?. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bendavid_et_al:LIPIcs.APPROX/RANDOM.2020.28,
  author =	{Ben-David, Shalev and G\"{o}\"{o}s, Mika and Kothari, Robin and Watson, Thomas},
  title =	{{When Is Amplification Necessary for Composition in Randomized Query Complexity?}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.28},
  URN =		{urn:nbn:de:0030-drops-126316},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.28},
  annote =	{Keywords: Amplification, composition, query complexity}
}
Document
Quantum Lower Bounds for Approximate Counting via Laurent Polynomials

Authors: Scott Aaronson, Robin Kothari, William Kretschmer, and Justin Thaler

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We study quantum algorithms that are given access to trusted and untrusted quantum witnesses. We establish strong limitations of such algorithms, via new techniques based on Laurent polynomials (i.e., polynomials with positive and negative integer exponents). Specifically, we resolve the complexity of approximate counting, the problem of multiplicatively estimating the size of a nonempty set S ⊆ [N], in two natural generalizations of quantum query complexity. Our first result holds in the standard Quantum Merlin - Arthur (QMA) setting, in which a quantum algorithm receives an untrusted quantum witness. We show that, if the algorithm makes T quantum queries to S, and also receives an (untrusted) m-qubit quantum witness, then either m = Ω(|S|) or T = Ω(√{N/|S|}). This is optimal, matching the straightforward protocols where the witness is either empty, or specifies all the elements of S. As a corollary, this resolves the open problem of giving an oracle separation between SBP, the complexity class that captures approximate counting, and QMA. In our second result, we ask what if, in addition to a membership oracle for S, a quantum algorithm is also given "QSamples" - i.e., copies of the state |S⟩ = 1/√|S| ∑_{i ∈ S} |i⟩ - or even access to a unitary transformation that enables QSampling? We show that, even then, the algorithm needs either Θ(√{N/|S|}) queries or else Θ(min{|S|^{1/3},√{N/|S|}}) QSamples or accesses to the unitary. Our lower bounds in both settings make essential use of Laurent polynomials, but in different ways.

Cite as

Scott Aaronson, Robin Kothari, William Kretschmer, and Justin Thaler. Quantum Lower Bounds for Approximate Counting via Laurent Polynomials. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 7:1-7:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2020.7,
  author =	{Aaronson, Scott and Kothari, Robin and Kretschmer, William and Thaler, Justin},
  title =	{{Quantum Lower Bounds for Approximate Counting via Laurent Polynomials}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{7:1--7:47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.7},
  URN =		{urn:nbn:de:0030-drops-125593},
  doi =		{10.4230/LIPIcs.CCC.2020.7},
  annote =	{Keywords: Approximate counting, Laurent polynomials, QSampling, query complexity}
}
Document
Quantum Coupon Collector

Authors: Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M. Childs, Robin Kothari, Ansis Rosmanis, and Ronald de Wolf

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
We study how efficiently a k-element set S⊆[n] can be learned from a uniform superposition |S> of its elements. One can think of |S>=∑_{i∈S}|i>/√|S| as the quantum version of a uniformly random sample over S, as in the classical analysis of the "coupon collector problem." We show that if k is close to n, then we can learn S using asymptotically fewer quantum samples than random samples. In particular, if there are n-k=O(1) missing elements then O(k) copies of |S> suffice, in contrast to the Θ(k log k) random samples needed by a classical coupon collector. On the other hand, if n-k=Ω(k), then Ω(k log k) quantum samples are necessary. More generally, we give tight bounds on the number of quantum samples needed for every k and n, and we give efficient quantum learning algorithms. We also give tight bounds in the model where we can additionally reflect through |S>. Finally, we relate coupon collection to a known example separating proper and improper PAC learning that turns out to show no separation in the quantum case.

Cite as

Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M. Childs, Robin Kothari, Ansis Rosmanis, and Ronald de Wolf. Quantum Coupon Collector. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.TQC.2020.10,
  author =	{Arunachalam, Srinivasan and Belovs, Aleksandrs and Childs, Andrew M. and Kothari, Robin and Rosmanis, Ansis and de Wolf, Ronald},
  title =	{{Quantum Coupon Collector}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.10},
  URN =		{urn:nbn:de:0030-drops-120692},
  doi =		{10.4230/LIPIcs.TQC.2020.10},
  annote =	{Keywords: Quantum algorithms, Adversary method, Coupon collector, Quantum learning theory}
}
Document
Quantum Distinguishing Complexity, Zero-Error Algorithms, and Statistical Zero Knowledge

Authors: Shalev Ben-David and Robin Kothari

Published in: LIPIcs, Volume 135, 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)


Abstract
We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a "quantum distinguishing algorithm" can output any state, as long as the output states for any 0-input and 1-input are distinguishable. Using this measure, we establish a new relationship in query complexity: For all total functions f, Q_0(f)=O~(Q(f)^5), where Q_0(f) and Q(f) denote the zero-error and bounded-error quantum query complexity of f respectively, improving on the previously known sixth power relationship. We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f), which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(f) also upper bounds the (positive-weights) adversary bound, which yields the following relationships for all f: Q(f) >= QSZK(f) >= QD(f) = Omega(Adv(f)). This sheds some light on why the adversary bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK complexity. Lastly, we show implications for lifting theorems in communication complexity. We show that a general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a general lifting theorem for bounded-error quantum query complexity.

Cite as

Shalev Ben-David and Robin Kothari. Quantum Distinguishing Complexity, Zero-Error Algorithms, and Statistical Zero Knowledge. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 135, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bendavid_et_al:LIPIcs.TQC.2019.2,
  author =	{Ben-David, Shalev and Kothari, Robin},
  title =	{{Quantum Distinguishing Complexity, Zero-Error Algorithms, and Statistical Zero Knowledge}},
  booktitle =	{14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-112-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{135},
  editor =	{van Dam, Wim and Man\v{c}inska, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2019.2},
  URN =		{urn:nbn:de:0030-drops-103944},
  doi =		{10.4230/LIPIcs.TQC.2019.2},
  annote =	{Keywords: Quantum query complexity, quantum algorithms}
}
Document
Separating Quantum Communication and Approximate Rank

Authors: Anurag Anshu, Shalev Ben-David, Ankit Garg, Rahul Jain, Robin Kothari, and Troy Lee

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
One of the best lower bound methods for the quantum communication complexity of a function H (with or without shared entanglement) is the logarithm of the approximate rank of the communication matrix of H. This measure is essentially equivalent to the approximate gamma-2 norm and generalized discrepancy, and subsumes several other lower bounds. All known lower bounds on quantum communication complexity in the general unbounded-round model can be shown via the logarithm of approximate rank, and it was an open problem to give any separation at all between quantum communication complexity and the logarithm of the approximate rank. In this work we provide the first such separation: We exhibit a total function H with quantum communication complexity almost quadratically larger than the logarithm of its approximate rank. We construct H using the communication lookup function framework of Anshu et al. (FOCS 2016) based on the cheat sheet framework of Aaronson et al. (STOC 2016). From a starting function F, this framework defines a new function H=F_G. Our main technical result is a lower bound on the quantum communication complexity of F_G in terms of the discrepancy of F, which we do via quantum information theoretic arguments. We show the upper bound on the approximate rank of F_G by relating it to the Boolean circuit size of the starting function F.

Cite as

Anurag Anshu, Shalev Ben-David, Ankit Garg, Rahul Jain, Robin Kothari, and Troy Lee. Separating Quantum Communication and Approximate Rank. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 24:1-24:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.CCC.2017.24,
  author =	{Anshu, Anurag and Ben-David, Shalev and Garg, Ankit and Jain, Rahul and Kothari, Robin and Lee, Troy},
  title =	{{Separating Quantum Communication and Approximate Rank}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{24:1--24:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.24},
  URN =		{urn:nbn:de:0030-drops-75303},
  doi =		{10.4230/LIPIcs.CCC.2017.24},
  annote =	{Keywords: Communication Complexity, Quantum Computing, Lower Bounds, logrank, Quantum Information}
}
Document
Randomized Query Complexity of Sabotaged and Composed Functions

Authors: Ben-David Shalev and Robin Kothari

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We study the composition question for bounded-error randomized query complexity: Is R(f circ g) = Omega(R(f)R(g))? We show that inserting a simple function h, whose query complexity is onlyTheta(log R(g)), in between f and g allows us to prove R(f circ h circ g) = Omega(R(f)R(h)R(g)). We prove this using a new lower bound measure for randomized query complexity we call randomized sabotage complexity, RS(f). Randomized sabotage complexity has several desirable properties, such as a perfect composition theorem, RS(f circ g) >= RS(f) RS(g), and a composition theorem with randomized query complexity, R(f circ g) = Omega(R(f) RS(g)). It is also a quadratically tight lower bound for total functions and can be quadratically superior to the partition bound, the best known general lower bound for randomized query complexity. Using this technique we also show implications for lifting theorems in communication complexity. We show that a general lifting theorem from zero-error randomized query to communication complexity implies a similar result for bounded-error algorithms for all total functions.

Cite as

Ben-David Shalev and Robin Kothari. Randomized Query Complexity of Sabotaged and Composed Functions. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 60:1-60:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{shalev_et_al:LIPIcs.ICALP.2016.60,
  author =	{Shalev, Ben-David and Kothari, Robin},
  title =	{{Randomized Query Complexity of Sabotaged and Composed Functions}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{60:1--60:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.60},
  URN =		{urn:nbn:de:0030-drops-62233},
  doi =		{10.4230/LIPIcs.ICALP.2016.60},
  annote =	{Keywords: Randomized query complexity, decision tree complexity, composition theorem, partition bound, lifting theorem}
}
Document
Nearly Optimal Separations Between Communication (or Query) Complexity and Partitions

Authors: Andris Ambainis, Martins Kokainis, and Robin Kothari

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We show a nearly quadratic separation between deterministic communication complexity and the logarithm of the partition number, which is essentially optimal. This improves upon a recent power 1.5 separation of Göös, Pitassi, and Watson (FOCS 2015). In query complexity, we establish a nearly quadratic separation between deterministic (and even randomized) query complexity and subcube partition complexity, which is also essentially optimal. We also establish a nearly power 1.5 separation between quantum query complexity and subcube partition complexity, the first superlinear separation between the two measures. Lastly, we show a quadratic separation between quantum query complexity and one-sided subcube partition complexity. Our query complexity separations use the recent cheat sheet framework of Aaronson, Ben-David, and Kothari. Our query functions are built up in stages by alternating function composition with the cheat sheet construction. The communication complexity separation follows from "lifting" the query separation to communication complexity.

Cite as

Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly Optimal Separations Between Communication (or Query) Complexity and Partitions. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ambainis_et_al:LIPIcs.CCC.2016.4,
  author =	{Ambainis, Andris and Kokainis, Martins and Kothari, Robin},
  title =	{{Nearly Optimal Separations Between Communication (or Query) Complexity and Partitions}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.4},
  URN =		{urn:nbn:de:0030-drops-58471},
  doi =		{10.4230/LIPIcs.CCC.2016.4},
  annote =	{Keywords: Query Complexity, Communication Complexity, Subcube Partition Complexity, Partition Bound}
}
Document
Separating Decision Tree Complexity from Subcube Partition Complexity

Authors: Robin Kothari, David Racicot-Desloges, and Miklos Santha

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
The subcube partition model of computation is at least as powerful as decision trees but no separation between these models was known. We show that there exists a function whose deterministic subcube partition complexity is asymptotically smaller than its randomized decision tree complexity, resolving an open problem of Friedgut, Kahn, and Wigderson (2002). Our lower bound is based on the information-theoretic techniques first introduced to lower bound the randomized decision tree complexity of the recursive majority function. We also show that the public-coin partition bound, the best known lower bound method for randomized decision tree complexity subsuming other general techniques such as block sensitivity, approximate degree, randomized certificate complexity, and the classical adversary bound, also lower bounds randomized subcube partition complexity. This shows that all these lower bound techniques cannot prove optimal lower bounds for randomized decision tree complexity, which answers an open question of Jain and Klauck (2010) and Jain, Lee, and Vishnoi (2014).

Cite as

Robin Kothari, David Racicot-Desloges, and Miklos Santha. Separating Decision Tree Complexity from Subcube Partition Complexity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 915-930, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kothari_et_al:LIPIcs.APPROX-RANDOM.2015.915,
  author =	{Kothari, Robin and Racicot-Desloges, David and Santha, Miklos},
  title =	{{Separating Decision Tree Complexity from Subcube Partition Complexity}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{915--930},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.915},
  URN =		{urn:nbn:de:0030-drops-53445},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.915},
  annote =	{Keywords: Decision tree complexity, query complexity, randomized algorithms, subcube partition complexity}
}
Document
An optimal quantum algorithm for the oracle identification problem

Authors: Robin Kothari

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
In the oracle identification problem, we are given oracle access to an unknown N-bit string x promised to belong to a known set C of size M and our task is to identify x. We present a quantum algorithm for the problem that is optimal in its dependence on N and M. Our algorithm considerably simplifies and improves the previous best algorithm due to Ambainis et al. Our algorithm also has applications in quantum learning theory, where it improves the complexity of exact learning with membership queries, resolving a conjecture of Hunziker et al. The algorithm is based on ideas from classical learning theory and a new composition theorem for solutions of the filtered gamma_2-norm semidefinite program, which characterizes quantum query complexity. Our composition theorem is quite general and allows us to compose quantum algorithms with input-dependent query complexities without incurring a logarithmic overhead for error reduction. As an application of the composition theorem, we remove all log factors from the best known quantum algorithm for Boolean matrix multiplication.

Cite as

Robin Kothari. An optimal quantum algorithm for the oracle identification problem. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 482-493, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{kothari:LIPIcs.STACS.2014.482,
  author =	{Kothari, Robin},
  title =	{{An optimal quantum algorithm for the oracle identification problem}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{482--493},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.482},
  URN =		{urn:nbn:de:0030-drops-44813},
  doi =		{10.4230/LIPIcs.STACS.2014.482},
  annote =	{Keywords: quantum algorithms, quantum query complexity, oracle identification}
}
Document
Easy and Hard Functions for the Boolean Hidden Shift Problem

Authors: Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler

Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)


Abstract
We study the quantum query complexity of the Boolean hidden shift problem. Given oracle access to f(x+s) for a known Boolean function f, the task is to determine the n-bit string s. The quantum query complexity of this problem depends strongly on f. We demonstrate that the easiest instances of this problem correspond to bent functions, in the sense that an exact one-query algorithm exists if and only if the function is bent. We partially characterize the hardest instances, which include delta functions. Moreover, we show that the problem is easy for random functions, since two queries suffice. Our algorithm for random functions is based on performing the pretty good measurement on several copies of a certain state; its analysis relies on the Fourier transform. We also use this approach to improve the quantum rejection sampling approach to the Boolean hidden shift problem.

Cite as

Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler. Easy and Hard Functions for the Boolean Hidden Shift Problem. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 50-79, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{childs_et_al:LIPIcs.TQC.2013.50,
  author =	{Childs, Andrew M. and Kothari, Robin and Ozols, Maris and Roetteler, Martin},
  title =	{{Easy and Hard Functions for the Boolean Hidden Shift Problem}},
  booktitle =	{8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)},
  pages =	{50--79},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-55-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{22},
  editor =	{Severini, Simone and Brandao, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.50},
  URN =		{urn:nbn:de:0030-drops-43203},
  doi =		{10.4230/LIPIcs.TQC.2013.50},
  annote =	{Keywords: Boolean hidden shift problem, quantum algorithms, query complexity, Fourier transform, bent functions}
}
Document
Dequantizing Read-once Quantum Formulas

Authors: Alessandro Cosentino, Robin Kothari, and Adam Paetznick

Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)


Abstract
Quantum formulas, defined by Yao [FOCS'93], are the quantum analogs of classical formulas, i.e., classical circuits in which all gates have fanout one. We show that any read-once quantum formula over a gate set that contains all single-qubit gates is equivalent to a read-once classical formula of the same size and depth over an analogous classical gate set. For example, any read-once quantum formula over Toffoli and single-qubit gates is equivalent to a read-once classical formula over Toffoli and NOT gates. We then show that the equivalence does not hold if the read-once restriction is removed. To show the power of quantum formulas without the read-once restriction, we define a new model of computation called the one-qubit model and show that it can compute all boolean functions. This model may also be of independent interest.

Cite as

Alessandro Cosentino, Robin Kothari, and Adam Paetznick. Dequantizing Read-once Quantum Formulas. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 80-92, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{cosentino_et_al:LIPIcs.TQC.2013.80,
  author =	{Cosentino, Alessandro and Kothari, Robin and Paetznick, Adam},
  title =	{{Dequantizing Read-once Quantum Formulas}},
  booktitle =	{8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)},
  pages =	{80--92},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-55-2},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{22},
  editor =	{Severini, Simone and Brandao, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.80},
  URN =		{urn:nbn:de:0030-drops-43197},
  doi =		{10.4230/LIPIcs.TQC.2013.80},
  annote =	{Keywords: formulas, dequantization, circuit complexity}
}
Document
Quantum query complexity of minor-closed graph properties

Authors: Andrew M. Childs and Robin Kothari

Published in: LIPIcs, Volume 9, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)


Abstract
We study the quantum query complexity of minor-closed graph properties, which include such problems as determining whether an $n$-vertex graph is planar, is a forest, or does not contain a path of a given length. We show that most minor-closed properties -- those that cannot be characterized by a finite set of forbidden subgraphs -- have quantum query complexity Theta(n^(3/2)). To establish this, we prove an adversary lower bound using a detailed analysis of the structure of minor-closed properties with respect to forbidden topological minors and forbidden subgraphs. On the other hand, we show that minor-closed properties (and more generally, sparse graph properties) that can be characterized by finitely many forbidden subgraphs can be solved strictly faster, in o(n^(3/2)) queries. Our algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems.

Cite as

Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed graph properties. In 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 9, pp. 661-672, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{childs_et_al:LIPIcs.STACS.2011.661,
  author =	{Childs, Andrew M. and Kothari, Robin},
  title =	{{Quantum query complexity of minor-closed graph properties}},
  booktitle =	{28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011)},
  pages =	{661--672},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-25-5},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{9},
  editor =	{Schwentick, Thomas and D\"{u}rr, Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2011.661},
  URN =		{urn:nbn:de:0030-drops-30521},
  doi =		{10.4230/LIPIcs.STACS.2011.661},
  annote =	{Keywords: quatum query complexity, quantum algorithms, lower bounds, graph minors, graph properties}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail