Search Results

Documents authored by Kowalik, Łukasz


Document
Edge-Coloring Sparse Graphs with Δ Colors in Quasilinear Time

Authors: Łukasz Kowalik

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper we show that every graph G of bounded maximum average degree mad(G) and with maximum degree Δ can be edge-colored using the optimal number of Δ colors in quasilinear time, whenever Δ ≥ 2mad(G). The maximum average degree is within a multiplicative constant of other popular graph sparsity parameters like arboricity, degeneracy or maximum density. Our algorithm extends previous results of Chrobak and Nishizeki [Marek Chrobak and Takao Nishizeki, 1990] and Bhattacharya, Costa, Panski and Solomon [Sayan Bhattacharya et al., 2023].

Cite as

Łukasz Kowalik. Edge-Coloring Sparse Graphs with Δ Colors in Quasilinear Time. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 81:1-81:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kowalik:LIPIcs.ESA.2024.81,
  author =	{Kowalik, {\L}ukasz},
  title =	{{Edge-Coloring Sparse Graphs with \Delta Colors in Quasilinear Time}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{81:1--81:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.81},
  URN =		{urn:nbn:de:0030-drops-211523},
  doi =		{10.4230/LIPIcs.ESA.2024.81},
  annote =	{Keywords: edge coloring, algorithm, sparse, graph, quasilinear}
}
Document
The Asymmetric Travelling Salesman Problem In Sparse Digraphs

Authors: Łukasz Kowalik and Konrad Majewski

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
Asymmetric Travelling Salesman Problem (ATSP) and its special case Directed Hamiltonicity are among the most fundamental problems in computer science. The dynamic programming algorithm running in time 𝒪^*(2ⁿ) developed almost 60 years ago by Bellman, Held and Karp, is still the state of the art for both of these problems. In this work we focus on sparse digraphs. First, we recall known approaches for Undirected Hamiltonicity and TSP in sparse graphs and we analyse their consequences for Directed Hamiltonicity and ATSP in sparse digraphs, either by adapting the algorithm, or by using reductions. In this way, we get a number of running time upper bounds for a few classes of sparse digraphs, including 𝒪^*(2^(n/3)) for digraphs with both out- and indegree bounded by 2, and 𝒪^*(3^(n/2)) for digraphs with outdegree bounded by 3. Our main results are focused on digraphs of bounded average outdegree d. The baseline for ATSP here is a simple enumeration of cycle covers which can be done in time bounded by 𝒪^*(μ(d)ⁿ) for a function μ(d) ≤ (⌈d⌉!)^(1/⌈d⌉). One can also observe that Directed Hamiltonicity can be solved in randomized time 𝒪^*((2-2^(-d))ⁿ) and polynomial space, by adapting a recent result of Björklund [ISAAC 2018] stated originally for Undirected Hamiltonicity in sparse bipartite graphs. We present two new deterministic algorithms for ATSP: the first running in time 𝒪(2^(0.441(d-1)n)) and polynomial space, and the second in exponential space with running time of 𝒪^*(τ(d)^(n/2)) for a function τ(d) ≤ d.

Cite as

Łukasz Kowalik and Konrad Majewski. The Asymmetric Travelling Salesman Problem In Sparse Digraphs. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kowalik_et_al:LIPIcs.IPEC.2020.23,
  author =	{Kowalik, {\L}ukasz and Majewski, Konrad},
  title =	{{The Asymmetric Travelling Salesman Problem In Sparse Digraphs}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.23},
  URN =		{urn:nbn:de:0030-drops-133269},
  doi =		{10.4230/LIPIcs.IPEC.2020.23},
  annote =	{Keywords: asymmetric traveling salesman problem, Hamiltonian cycle, sparse graphs, exponential algorithm}
}
Document
The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth

Authors: Łukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and Piotr Wygocki

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
This year’s Parameterized Algorithms and Computational Experiments challenge (PACE 2020) was devoted to the problem of computing the treedepth of a given graph. Altogether 51 participants from 20 teams, 12 countries and 3 continents submitted their implementations to the competition. In this report, we describe the setup of the challenge, the selection of benchmark instances and the ranking of the participating teams. We also briefly discuss the approaches used in the submitted solvers and the differences in their performance on our benchmark dataset.

Cite as

Łukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and Piotr Wygocki. The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kowalik_et_al:LIPIcs.IPEC.2020.37,
  author =	{Kowalik, {\L}ukasz and Mucha, Marcin and Nadara, Wojciech and Pilipczuk, Marcin and Sorge, Manuel and Wygocki, Piotr},
  title =	{{The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.37},
  URN =		{urn:nbn:de:0030-drops-133404},
  doi =		{10.4230/LIPIcs.IPEC.2020.37},
  annote =	{Keywords: computing treedepth, contest, implementation challenge, FPT}
}
Document
Many Visits TSP Revisited

Authors: Łukasz Kowalik, Shaohua Li, Wojciech Nadara, Marcin Smulewicz, and Magnus Wahlström

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We study the Many Visits TSP problem, where given a number k(v) for each of n cities and pairwise (possibly asymmetric) integer distances, one has to find an optimal tour that visits each city v exactly k(v) times. The currently fastest algorithm is due to Berger, Kozma, Mnich and Vincze [SODA 2019, TALG 2020] and runs in time and space O*(5ⁿ). They also show a polynomial space algorithm running in time O(16^{n+o(n)}). In this work, we show three main results: - A randomized polynomial space algorithm in time O*(2^n D), where D is the maximum distance between two cities. By using standard methods, this results in a (1+ε)-approximation in time O*(2ⁿε^{-1}). Improving the constant 2 in these results would be a major breakthrough, as it would result in improving the O*(2ⁿ)-time algorithm for Directed Hamiltonian Cycle, which is a 50 years old open problem. - A tight analysis of Berger et al.’s exponential space algorithm, resulting in an O*(4ⁿ) running time bound. - A new polynomial space algorithm, running in time O(7.88ⁿ).

Cite as

Łukasz Kowalik, Shaohua Li, Wojciech Nadara, Marcin Smulewicz, and Magnus Wahlström. Many Visits TSP Revisited. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 66:1-66:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kowalik_et_al:LIPIcs.ESA.2020.66,
  author =	{Kowalik, {\L}ukasz and Li, Shaohua and Nadara, Wojciech and Smulewicz, Marcin and Wahlstr\"{o}m, Magnus},
  title =	{{Many Visits TSP Revisited}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{66:1--66:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.66},
  URN =		{urn:nbn:de:0030-drops-129329},
  doi =		{10.4230/LIPIcs.ESA.2020.66},
  annote =	{Keywords: many visits traveling salesman problem, exponential algorithm}
}
Document
Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP

Authors: Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Łukasz Kowalik

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian cycle C into a new Hamiltonian cycle C' by replacing k edges. We analyze the problem of determining whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in time f(k) n^o(k / log k) for any function f, while (ii) it is possible to improve on the brute-force running time of O(n^k) and save linear factors in the exponent. Modern TSP heuristics are very successful at identifying the most promising edges to be used in k-opt moves, and experiments show that very good global solutions can already be reached using only the top-O(1) most promising edges incident to each vertex. This leads to the following question: can improving k-opt moves be found efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving k-move can be found in time O(n^((23/135+epsilon_k)k)), where lim_{k -> infty} epsilon_k = 0. This improves upon the best-known bounds for general graphs. Due to its practical importance, we devote special attention to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear time. For k <= 7, we give quasi-linear time algorithms for general weights. For k=8 we obtain a quasi-linear time algorithm when the weights are bounded by O(polylog n). On the other hand, based on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic weights on bounded-degree graphs.

Cite as

Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Łukasz Kowalik. Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2019.23,
  author =	{Bonnet, \'{E}douard and Iwata, Yoichi and Jansen, Bart M. P. and Kowalik, {\L}ukasz},
  title =	{{Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.23},
  URN =		{urn:nbn:de:0030-drops-111444},
  doi =		{10.4230/LIPIcs.ESA.2019.23},
  annote =	{Keywords: traveling salesman problem, k-OPT, bounded degree}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail