Search Results

Documents authored by Kryven, Myroslav


Document
Bounding the Treewidth of Outer k-Planar Graphs via Triangulations

Authors: Oksana Firman, Grzegorz Gutowski, Myroslav Kryven, Yuto Okada, and Alexander Wolff

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
The treewidth is a structural parameter that measures the tree-likeness of a graph. Many algorithmic and combinatorial results are expressed in terms of the treewidth. In this paper, we study the treewidth of outer k-planar graphs, that is, graphs that admit a straight-line drawing where all the vertices lie on a circle, and every edge is crossed by at most k other edges. Wood and Telle [New York J. Math., 2007] showed that every outer k-planar graph has treewidth at most 3k + 11 using so-called planar decompositions, and later, Auer et al. [Algorithmica, 2016] proved that the treewidth of outer 1-planar graphs is at most 3, which is tight. In this paper, we improve the general upper bound to 1.5k + 2 and give a tight bound of 4 for k = 2. We also establish a lower bound: we show that, for every even k, there is an outer k-planar graph with treewidth k+2. Our new bound immediately implies a better bound on the cop number, which answers an open question of Durocher et al. [GD 2023] in the affirmative. Our treewidth bound relies on a new and simple triangulation method for outer k-planar graphs that yields few crossings with graph edges per edge of the triangulation. Our method also enables us to obtain a tight upper bound of k + 2 for the separation number of outer k-planar graphs, improving an upper bound of 2k + 3 by Chaplick et al. [GD 2017]. We also consider outer min-k-planar graphs, a generalization of outer k-planar graphs, where we achieve smaller improvements.

Cite as

Oksana Firman, Grzegorz Gutowski, Myroslav Kryven, Yuto Okada, and Alexander Wolff. Bounding the Treewidth of Outer k-Planar Graphs via Triangulations. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{firman_et_al:LIPIcs.GD.2024.14,
  author =	{Firman, Oksana and Gutowski, Grzegorz and Kryven, Myroslav and Okada, Yuto and Wolff, Alexander},
  title =	{{Bounding the Treewidth of Outer k-Planar Graphs via Triangulations}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.14},
  URN =		{urn:nbn:de:0030-drops-212988},
  doi =		{10.4230/LIPIcs.GD.2024.14},
  annote =	{Keywords: treewidth, outerplanar graphs, outer k-planar graphs, outer min-k-planar graphs, cop number, separation number}
}
Document
Poster Abstract
String Graph with Cop Number 4 (Poster Abstract)

Authors: Stephane Durocher, Myroslav Kryven, and Maarten Löffler

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Cops and Robbers is a well-studied pursuit-evasion game in which a set of cops seeks to catch a robber in a graph G, where cops and the robber move along edges of G. The cop number of G is the minimum number of cops that is sufficient to catch the robber. The game of Cops and Robbers has been well-studied on beyond-planar graphs (that is, graphs that can be drawn with only few crossings) [M. Aigner and M. Fromme, 1984; Durocher et al., 2023] as well as intersection graphs (that is, graphs where the vertices represent geometric objects, and an edge exists between two vertices if the corresponding objects intersect). We consider a well-known subclass of intersection graphs called string graphs where the objects are curves. So far no string graph with cop number larger than three was known. We construct the first string graph with cop number four, which improves the previous bound and answers an open question by Gavenčiak et al. [Tomáš Gavenčiak et al., 2018].

Cite as

Stephane Durocher, Myroslav Kryven, and Maarten Löffler. String Graph with Cop Number 4 (Poster Abstract). In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 53:1-53:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{durocher_et_al:LIPIcs.GD.2024.53,
  author =	{Durocher, Stephane and Kryven, Myroslav and L\"{o}ffler, Maarten},
  title =	{{String Graph with Cop Number 4}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{53:1--53:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.53},
  URN =		{urn:nbn:de:0030-drops-213376},
  doi =		{10.4230/LIPIcs.GD.2024.53},
  annote =	{Keywords: point set embedding, upward planar path embedding, dynamic programming}
}
Document
Drawing Graphs with Circular Arcs and Right-Angle Crossings

Authors: Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
In a RAC drawing of a graph, vertices are represented by points in the plane, adjacent vertices are connected by line segments, and crossings must form right angles. Graphs that admit such drawings are RAC graphs. RAC graphs are beyond-planar graphs and have been studied extensively. In particular, it is known that a RAC graph with n vertices has at most 4n-10 edges. We introduce a superclass of RAC graphs, which we call arc-RAC graphs. A graph is arc-RAC if it admits a drawing where edges are represented by circular arcs and crossings form right angles. We provide a Turán-type result showing that an arc-RAC graph with n vertices has at most 14n-12 edges and that there are n-vertex arc-RAC graphs with 4.5n - O(√n) edges.

Cite as

Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff. Drawing Graphs with Circular Arcs and Right-Angle Crossings. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chaplick_et_al:LIPIcs.SWAT.2020.21,
  author =	{Chaplick, Steven and F\"{o}rster, Henry and Kryven, Myroslav and Wolff, Alexander},
  title =	{{Drawing Graphs with Circular Arcs and Right-Angle Crossings}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{21:1--21:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.21},
  URN =		{urn:nbn:de:0030-drops-122687},
  doi =		{10.4230/LIPIcs.SWAT.2020.21},
  annote =	{Keywords: circular arcs, right-angle crossings, edge density, charging argument}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail