Search Results

Documents authored by Lagoutte, Aurélie


Document
The Canadian Traveller Problem on Outerplanar Graphs

Authors: Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study the k-Canadian Traveller Problem, where a weighted graph G = (V,E,ω) with a source s ∈ V and a target t ∈ V are given. This problem also has a hidden input E_* ⊊ E of cardinality at most k representing blocked edges. The objective is to travel from s to t with the minimum distance. At the beginning of the walk, the blockages E_* are unknown: the traveller discovers that an edge is blocked when visiting one of its endpoints. Online algorithms, also called strategies, have been proposed for this problem and assessed with the competitive ratio, i.e., the ratio between the distance actually traversed by the traveller divided by the distance he would have traversed knowing the blockages in advance. Even though the optimal competitive ratio is 2k+1 even on unit-weighted planar graphs of treewidth 2, we design a polynomial-time strategy achieving competitive ratio 9 on unit-weighted outerplanar graphs. This value 9 also stands as a lower bound for this family of graphs as we prove that, for any ε > 0, no strategy can achieve a competitive ratio 9-ε. Finally, we show that it is not possible to achieve a constant competitive ratio (independent of G and k) on weighted outerplanar graphs.

Cite as

Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor. The Canadian Traveller Problem on Outerplanar Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beaudou_et_al:LIPIcs.MFCS.2024.19,
  author =	{Beaudou, Laurent and Berg\'{e}, Pierre and Chernyshev, Vsevolod and Dailly, Antoine and Gerard, Yan and Lagoutte, Aur\'{e}lie and Limouzy, Vincent and Pastor, Lucas},
  title =	{{The Canadian Traveller Problem on Outerplanar Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.19},
  URN =		{urn:nbn:de:0030-drops-205750},
  doi =		{10.4230/LIPIcs.MFCS.2024.19},
  annote =	{Keywords: Canadian Traveller Problem, Online algorithms, Competitive analysis, Outerplanar graphs}
}
Document
Local Certification of Geometric Graph Classes

Authors: Oscar Defrain, Louis Esperet, Aurélie Lagoutte, Pat Morin, and Jean-Florent Raymond

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The goal of local certification is to locally convince the vertices of a graph G that G satisfies a given property. A prover assigns short certificates to the vertices of the graph, then the vertices are allowed to check their certificates and the certificates of their neighbors, and based only on this local view and their own unique identifier, they must decide whether G satisfies the given property. If the graph indeed satisfies the property, all vertices must accept the instance, and otherwise at least one vertex must reject the instance (for any possible assignment of certificates). The goal is to minimize the size of the certificates. In this paper we study the local certification of geometric and topological graph classes. While it is known that in n-vertex graphs, planarity can be certified locally with certificates of size O(log n), we show that several closely related graph classes require certificates of size Ω(n). This includes penny graphs, unit-distance graphs, (induced) subgraphs of the square grid, 1-planar graphs, and unit-square graphs. These bounds are tight up to a constant factor and give the first known examples of hereditary (and even monotone) graph classes for which the certificates must have linear size. For unit-disk graphs we obtain a lower bound of Ω(n^{1-δ}) for any δ > 0 on the size of the certificates, and an upper bound of O(n log n). The lower bounds are obtained by proving rigidity properties of the considered graphs, which might be of independent interest.

Cite as

Oscar Defrain, Louis Esperet, Aurélie Lagoutte, Pat Morin, and Jean-Florent Raymond. Local Certification of Geometric Graph Classes. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{defrain_et_al:LIPIcs.MFCS.2024.48,
  author =	{Defrain, Oscar and Esperet, Louis and Lagoutte, Aur\'{e}lie and Morin, Pat and Raymond, Jean-Florent},
  title =	{{Local Certification of Geometric Graph Classes}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.48},
  URN =		{urn:nbn:de:0030-drops-206042},
  doi =		{10.4230/LIPIcs.MFCS.2024.48},
  annote =	{Keywords: Local certification, proof labeling schemes, geometric intersection graphs}
}
Document
Invited Talk
Graph coloring, communication complexity and the stubborn problem (Invited Talk)

Authors: Nicolas Bousquet, Aurélie Lagoutte, and Thomassé Stéphan

Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)


Abstract
We discuss three equivalent forms of the same problem arising in communication complexity, constraint satisfaction problems, and graph coloring. Some partial results are discussed.

Cite as

Nicolas Bousquet, Aurélie Lagoutte, and Thomassé Stéphan. Graph coloring, communication complexity and the stubborn problem (Invited Talk). In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 3-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2013.3,
  author =	{Bousquet, Nicolas and Lagoutte, Aur\'{e}lie and St\'{e}phan, Thomass\'{e}},
  title =	{{Graph coloring, communication complexity and the stubborn problem}},
  booktitle =	{30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
  pages =	{3--4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-50-7},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{20},
  editor =	{Portier, Natacha and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.3},
  URN =		{urn:nbn:de:0030-drops-39158},
  doi =		{10.4230/LIPIcs.STACS.2013.3},
  annote =	{Keywords: stubborn problem, graph coloring, Clique-Stable set separation, Alon-Saks-Seymour conjecture, bipartite packing}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail