Document

**Published in:** LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)

Consider a weighted, undirected graph cellularly embedded on a topological surface. The function assigning to each free homotopy class of closed curves the length of a shortest cycle within this homotopy class is called the marked length spectrum. The (unmarked) length spectrum is obtained by just listing the length values of the marked length spectrum in increasing order.
In this paper, we describe algorithms for computing the (un)marked length spectra of graphs embedded on the torus. More specifically, we preprocess a weighted graph of complexity n in time O(n² log log n) so that, given a cycle with 𝓁 edges representing a free homotopy class, the length of a shortest homotopic cycle can be computed in O(𝓁+log n) time. Moreover, given any positive integer k, the first k values of its unmarked length spectrum can be computed in time O(k log n).
Our algorithms are based on a correspondence between weighted graphs on the torus and polyhedral norms. In particular, we give a weight independent bound on the complexity of the unit ball of such norms. As an immediate consequence we can decide if two embedded weighted graphs have the same marked spectrum in polynomial time. We also consider the problem of comparing the unmarked spectra and provide a polynomial time algorithm in the unweighted case and a randomized polynomial time algorithm otherwise.

Vincent Delecroix, Matthijs Ebbens, Francis Lazarus, and Ivan Yakovlev. Algorithms for Length Spectra of Combinatorial Tori. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{delecroix_et_al:LIPIcs.SoCG.2023.26, author = {Delecroix, Vincent and Ebbens, Matthijs and Lazarus, Francis and Yakovlev, Ivan}, title = {{Algorithms for Length Spectra of Combinatorial Tori}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {26:1--26:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.26}, URN = {urn:nbn:de:0030-drops-178765}, doi = {10.4230/LIPIcs.SoCG.2023.26}, annote = {Keywords: graphs on surfaces, length spectrum, polyhedral norm} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

A result due to Burago and Zalgaller states that every orientable polyhedral surface, one that is obtained by gluing Euclidean polygons, has an isometric piecewise linear (PL) embedding into Euclidean space 𝔼³. A flat torus, resulting from the identification of the opposite sides of a Euclidean parallelogram, is a simple example of polyhedral surface. In a first part, we adapt the proof of Burago and Zalgaller, which is partially constructive, to produce PL isometric embeddings of flat tori. In practice, the resulting embeddings have a huge number of vertices, moreover distinct for every flat torus. In a second part, based on another construction of Zalgaller and on recent works by Arnoux et al., we exhibit a universal triangulation with 5974 triangles which can be embedded linearly on each triangle in order to realize the metric of any flat torus.

Francis Lazarus and Florent Tallerie. A Universal Triangulation for Flat Tori. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 53:1-53:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{lazarus_et_al:LIPIcs.SoCG.2022.53, author = {Lazarus, Francis and Tallerie, Florent}, title = {{A Universal Triangulation for Flat Tori}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {53:1--53:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.53}, URN = {urn:nbn:de:0030-drops-160617}, doi = {10.4230/LIPIcs.SoCG.2022.53}, annote = {Keywords: Triangulation, flat torus, isometric embedding} }

Document

**Published in:** LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)

In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the complexity of the input 3-manifold.
As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve γ, and a collection of disjoint normal curves Δ, there is a polynomial-time algorithm to decide if γ lies in the normal subgroup generated by components of Δ in the fundamental group of the surface after attaching the curves to a basepoint.

Erin Wolf Chambers, Francis Lazarus, Arnaud de Mesmay, and Salman Parsa. Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{chambers_et_al:LIPIcs.SoCG.2021.23, author = {Chambers, Erin Wolf and Lazarus, Francis and de Mesmay, Arnaud and Parsa, Salman}, title = {{Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {23:1--23:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.23}, URN = {urn:nbn:de:0030-drops-138223}, doi = {10.4230/LIPIcs.SoCG.2021.23}, annote = {Keywords: 3-manifolds, surfaces, low-dimensional topology, contractibility, compressed curves} }

Document

**Published in:** LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)

The geometric intersection number of a curve on a surface is the minimal number of self-intersections of any homotopic curve, i.e. of any curve obtained by continuous deformation. Given a curve c represented by a closed walk of length at most l on a combinatorial surface of complexity n we describe simple algorithms to (1) compute the geometric intersection number of c in O(n+ l^2) time, (2) construct a curve homotopic to c that realizes this geometric intersection number in O(n+l^4) time, (3) decide if the geometric intersection number of c is zero, i.e. if c is homotopic to a simple curve, in O(n+l log^2 l) time.
To our knowledge, no exact complexity analysis had yet appeared on those problems. An optimistic analysis of the complexity of the published algorithms for problems (1) and (3) gives at best a O(n+g^2l^2) time complexity on a genus g surface without boundary. No polynomial time algorithm was known for problem (2). Interestingly, our solution to problem (3) is the first quasi-linear algorithm since the problem was raised by Poincare more than a century ago. Finally, we note that our algorithm for problem (1) extends to computing the geometric intersection number of two curves of length at most l in O(n+ l^2) time.

Vincent Despré and Francis Lazarus. Computing the Geometric Intersection Number of Curves. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{despre_et_al:LIPIcs.SoCG.2017.35, author = {Despr\'{e}, Vincent and Lazarus, Francis}, title = {{Computing the Geometric Intersection Number of Curves}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {35:1--35:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.35}, URN = {urn:nbn:de:0030-drops-71838}, doi = {10.4230/LIPIcs.SoCG.2017.35}, annote = {Keywords: computational topology, curves on surfaces, combinatorial geodesic} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail