Search Results

Documents authored by Li, Fei


Found 2 Possible Name Variants:

Li, Fei

Document
Online Packet Scheduling with Bounded Delay and Lookahead

Authors: Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jirí Sgall, and Pavel Veselý

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of unit size arrive at a router over time and need to be transmitted over a network link. Each packet has two attributes: a non-negative weight and a deadline for its transmission. The objective is to maximize the total weight of the transmitted packets. This problem has been well studied in the literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [Englert and Westermann, SODA 2007], still quite far from the best lower bound of phi approx 1.618 [Hajek, CISS 2001; Andelman et al, SODA 2003; Chin and Fung, Algorithmica, 2003]. In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in at most s consecutive slots, starting at its release time. The lower bound of phi applies even to the special case of 2-bounded instances, and a phi-competitive algorithm for 3-bounded instances was given in [Chin et al, JDA, 2006]. Improving that result, and addressing a question posed by Goldwasser [SIGACT News, 2010], we present a phi-competitive algorithm for 4-bounded instances. We also study a variant of PacketScheduling where an online algorithm has the additional power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketScheduling with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with competitive ratio frac{1}{2}(sqrt{13} - 1) approx 1.303 and we prove a nearly tight lower bound of frac{1}{4}(1 + sqrt{17}) approx 1.281.

Cite as

Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jirí Sgall, and Pavel Veselý. Online Packet Scheduling with Bounded Delay and Lookahead. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 21:1-21:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bohm_et_al:LIPIcs.ISAAC.2016.21,
  author =	{B\"{o}hm, Martin and Chrobak, Marek and Jez, Lukasz and Li, Fei and Sgall, Jir{\'\i} and Vesel\'{y}, Pavel},
  title =	{{Online Packet Scheduling with Bounded Delay and Lookahead}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{21:1--21:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.21},
  URN =		{urn:nbn:de:0030-drops-67901},
  doi =		{10.4230/LIPIcs.ISAAC.2016.21},
  annote =	{Keywords: buffer management, online scheduling, online algorithm, lookahead}
}

Li, Shanfei

Document
An Improved Approximation Algorithm for the Hard Uniform Capacitated k-median Problem

Authors: Shanfei Li

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
In the k-median problem, given a set of locations, the goal is to select a subset of at most k centers so as to minimize the total cost of connecting each location to its nearest center. We study the uniform hard capacitated version of the k-median problem, in which each selected center can only serve a limited number of locations. Inspired by the algorithm of Charikar, Guha, Tardos and Shmoys, we give an improved approximation algorithm for this problem with increasing the capacities by a constant factor, which improves the previous best approximation algorithm proposed by Byrka, Fleszar, Rybicki and Spoerhase.

Cite as

Shanfei Li. An Improved Approximation Algorithm for the Hard Uniform Capacitated k-median Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 325-338, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{li:LIPIcs.APPROX-RANDOM.2014.325,
  author =	{Li, Shanfei},
  title =	{{An Improved Approximation Algorithm for the Hard Uniform Capacitated k-median Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{325--338},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.325},
  URN =		{urn:nbn:de:0030-drops-47062},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.325},
  annote =	{Keywords: Approximation algorithm; k-median problem; LP-rounding; Hard capacities}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail