Search Results

Documents authored by Li, Yuhao


Document
Testing Intersecting and Union-Closed Families

Authors: Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Inspired by the classic problem of Boolean function monotonicity testing, we investigate the testability of other well-studied properties of combinatorial finite set systems, specifically intersecting families and union-closed families. A function f: {0,1}ⁿ → {0,1} is intersecting (respectively, union-closed) if its set of satisfying assignments corresponds to an intersecting family (respectively, a union-closed family) of subsets of [n]. Our main results are that - in sharp contrast with the property of being a monotone set system - the property of being an intersecting set system, and the property of being a union-closed set system, both turn out to be information-theoretically difficult to test. We show that: - For ε ≥ Ω(1/√n), any non-adaptive two-sided ε-tester for intersectingness must make 2^{Ω(n^{1/4}/√{ε})} queries. We also give a 2^{Ω(√{n log(1/ε)})}-query lower bound for non-adaptive one-sided ε-testers for intersectingness. - For ε ≥ 1/2^{Ω(n^{0.49})}, any non-adaptive two-sided ε-tester for union-closedness must make n^{Ω(log(1/ε))} queries. Thus, neither intersectingness nor union-closedness shares the poly(n,1/ε)-query non-adaptive testability that is enjoyed by monotonicity. To complement our lower bounds, we also give a simple poly(n^{√{nlog(1/ε)}},1/ε)-query, one-sided, non-adaptive algorithm for ε-testing each of these properties (intersectingness and union-closedness). We thus achieve nearly tight upper and lower bounds for two-sided testing of intersectingness when ε = Θ(1/√n), and for one-sided testing of intersectingness when ε = Θ(1).

Cite as

Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A. Servedio. Testing Intersecting and Union-Closed Families. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 33:1-33:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2024.33,
  author =	{Chen, Xi and De, Anindya and Li, Yuhao and Nadimpalli, Shivam and Servedio, Rocco A.},
  title =	{{Testing Intersecting and Union-Closed Families}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{33:1--33:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.33},
  URN =		{urn:nbn:de:0030-drops-195610},
  doi =		{10.4230/LIPIcs.ITCS.2024.33},
  annote =	{Keywords: Sublinear algorithms, property testing, computational complexity, monotonicity, intersecting families, union-closed families}
}
Document
Intersection Classes in TFNP and Proof Complexity

Authors: Yuhao Li, William Pires, and Robert Robere

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
A recent breakthrough in the theory of total NP search problems (TFNP) by Fearnley, Goldberg, Hollender, and Savani has shown that CLS = PLS ∩ PPAD, or, in other words, the class of problems reducible to gradient descent are exactly those problems in the intersection of the complexity classes PLS and PPAD. Since this result, two more intersection theorems have been discovered in this theory: EOPL = PLS ∩ PPAD and SOPL = PLS ∩ PPADS. It is natural to wonder if this exhausts the list of intersection classes in TFNP, or, if other intersections exist. In this work, we completely classify all intersection classes involved among the classical TFNP classes PLS, PPAD, and PPA, giving new complete problems for the newly-introduced intersections. Following the close links between the theory of TFNP and propositional proof complexity, we develop new proof systems - each of which is a generalization of the classical Resolution proof system - that characterize all of the classes, in the sense that a query total search problem is in the intersection class if and only if a tautology associated with the search problem has a short proof in the proof system. We complement these new characterizations with black-box separations between all of the newly introduced classes and prior classes, thus giving strong evidence that no further collapse occurs. Finally, we characterize arbitrary intersections and joins of the PPA_q classes for q ≥ 2 in terms of the Nullstellensatz proof systems.

Cite as

Yuhao Li, William Pires, and Robert Robere. Intersection Classes in TFNP and Proof Complexity. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 74:1-74:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITCS.2024.74,
  author =	{Li, Yuhao and Pires, William and Robere, Robert},
  title =	{{Intersection Classes in TFNP and Proof Complexity}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{74:1--74:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.74},
  URN =		{urn:nbn:de:0030-drops-196023},
  doi =		{10.4230/LIPIcs.ITCS.2024.74},
  annote =	{Keywords: TFNP, Proof Complexity, Intersection Classes}
}
Document
Reducing Tarski to Unique Tarski (In the Black-Box Model)

Authors: Xi Chen, Yuhao Li, and Mihalis Yannakakis

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We study the problem of finding a Tarski fixed point over the k-dimensional grid [n]^k. We give a black-box reduction from the Tarski problem to the same problem with an additional promise that the input function has a unique fixed point. It implies that the Tarski problem and the unique Tarski problem have exactly the same query complexity. Our reduction is based on a novel notion of partial-information functions which we use to fool algorithms for the unique Tarski problem as if they were working on a monotone function with a unique fixed point.

Cite as

Xi Chen, Yuhao Li, and Mihalis Yannakakis. Reducing Tarski to Unique Tarski (In the Black-Box Model). In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 21:1-21:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CCC.2023.21,
  author =	{Chen, Xi and Li, Yuhao and Yannakakis, Mihalis},
  title =	{{Reducing Tarski to Unique Tarski (In the Black-Box Model)}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.21},
  URN =		{urn:nbn:de:0030-drops-182919},
  doi =		{10.4230/LIPIcs.CCC.2023.21},
  annote =	{Keywords: Tarski fixed point, Query complexity, TFNP}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail