Search Results

Documents authored by Lin, Honghao


Document
Space Complexity of Minimum Cut Problems in Single-Pass Streams

Authors: Matthew Ding, Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, and David P. Woodruff

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ω(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we give an Ω(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors.

Cite as

Matthew Ding, Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, and David P. Woodruff. Space Complexity of Minimum Cut Problems in Single-Pass Streams. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 43:1-43:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ding_et_al:LIPIcs.ITCS.2025.43,
  author =	{Ding, Matthew and Garces, Alexandro and Li, Jason and Lin, Honghao and Nelson, Jelani and Shah, Vihan and Woodruff, David P.},
  title =	{{Space Complexity of Minimum Cut Problems in Single-Pass Streams}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{43:1--43:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.43},
  URN =		{urn:nbn:de:0030-drops-226714},
  doi =		{10.4230/LIPIcs.ITCS.2025.43},
  annote =	{Keywords: minimum cut, approximate, random order, lower bound}
}
Document
RANDOM
Streaming Algorithms with Large Approximation Factors

Authors: Yi Li, Honghao Lin, David P. Woodruff, and Yuheng Zhang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We initiate a broad study of classical problems in the streaming model with insertions and deletions in the setting where we allow the approximation factor α to be much larger than 1. Such algorithms can use significantly less memory than the usual setting for which α = 1+ε for an ε ∈ (0,1). We study large approximations for a number of problems in sketching and streaming, assuming that the underlying n-dimensional vector has all coordinates bounded by M throughout the data stream: 1) For the 𝓁_p norm/quasi-norm, 0 < p ≤ 2, we show that obtaining a poly(n)-approximation requires the same amount of memory as obtaining an O(1)-approximation for any M = n^Θ(1), which holds even for randomly ordered streams or for streams in the bounded deletion model. 2) For estimating the 𝓁_p norm, p > 2, we show an upper bound of O(n^{1-2/p} (log n log M)/α²) bits for an α-approximation, and give a matching lower bound for linear sketches. 3) For the 𝓁₂-heavy hitters problem, we show that the known lower bound of Ω(k log nlog M) bits for identifying (1/k)-heavy hitters holds even if we are allowed to output items that are 1/(α k)-heavy, provided the algorithm succeeds with probability 1-O(1/n). We also obtain a lower bound for linear sketches that is tight even for constant failure probability algorithms. 4) For estimating the number 𝓁₀ of distinct elements, we give an n^{1/t}-approximation algorithm using O(tlog log M) bits of space, as well as a lower bound of Ω(t) bits, both excluding the storage of random bits, where n is the dimension of the underlying frequency vector and M is an upper bound on the magnitude of its coordinates. 5) For α-approximation to the Schatten-p norm, we give near-optimal Õ(n^{2-4/p}/α⁴) sketching dimension for every even integer p and every α ≥ 1, while for p not an even integer we obtain near-optimal sketching dimension once α = Ω(n^{1/q-1/p}), where q is the largest even integer less than p. The latter is surprising as it is unknown what the complexity of Schatten-p norm estimation is for constant approximation; we show once the approximation factor is at least n^{1/q-1/p}, we can obtain near-optimal sketching bounds.

Cite as

Yi Li, Honghao Lin, David P. Woodruff, and Yuheng Zhang. Streaming Algorithms with Large Approximation Factors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 13:1-13:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2022.13,
  author =	{Li, Yi and Lin, Honghao and Woodruff, David P. and Zhang, Yuheng},
  title =	{{Streaming Algorithms with Large Approximation Factors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{13:1--13:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.13},
  URN =		{urn:nbn:de:0030-drops-171354},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.13},
  annote =	{Keywords: streaming algorithms, 𝓁\underlinep norm, heavy hitters, distinct elements}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail