Search Results

Documents authored by Maassen, Hans


Document
Quasirandom Quantum Channels

Authors: Tom Bannink, Jop Briët, Farrokh Labib, and Hans Maassen

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
Mixing (or quasirandom) properties of the natural transition matrix associated to a graph can be quantified by its distance to the complete graph. Different mixing properties correspond to different norms to measure this distance. For dense graphs, two such properties known as spectral expansion and uniformity were shown to be equivalent in seminal 1989 work of Chung, Graham and Wilson. Recently, Conlon and Zhao extended this equivalence to the case of sparse vertex transitive graphs using the famous Grothendieck inequality. Here we generalize these results to the non-commutative, or "quantum", case, where a transition matrix becomes a quantum channel. In particular, we show that for irreducibly covariant quantum channels, expansion is equivalent to a natural analog of uniformity for graphs, generalizing the result of Conlon and Zhao. Moreover, we show that in these results, the non-commutative and commutative (resp.) Grothendieck inequalities yield the best-possible constants.

Cite as

Tom Bannink, Jop Briët, Farrokh Labib, and Hans Maassen. Quasirandom Quantum Channels. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bannink_et_al:LIPIcs.TQC.2020.5,
  author =	{Bannink, Tom and Bri\"{e}t, Jop and Labib, Farrokh and Maassen, Hans},
  title =	{{Quasirandom Quantum Channels}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.5},
  URN =		{urn:nbn:de:0030-drops-120642},
  doi =		{10.4230/LIPIcs.TQC.2020.5},
  annote =	{Keywords: Quantum channels, quantum expanders, quasirandomness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail