Search Results

Documents authored by Mazzali, Davide


Document
APPROX
Min-CSPs on Complete Instances II: Polylogarithmic Approximation for Min-NAE-3-SAT

Authors: Aditya Anand, Euiwoong Lee, Davide Mazzali, and Amatya Sharma

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
This paper studies complete k-Constraint Satisfaction Problems (CSPs), where an n-variable instance has exactly one nontrivial constraint for each subset of k variables, i.e., it has binom(n,k) constraints. A recent work started a systematic study of complete k-CSPs [Anand, Lee, Sharma, SODA'25], and showed a quasi-polynomial time algorithm that decides if there is an assignment satisfying all the constraints of any complete Boolean-alphabet k-CSP, algorithmically separating complete instances from dense instances. The tractability of this decision problem is necessary for any nontrivial (multiplicative) approximation for the minimization version, whose goal is to minimize the number of violated constraints. The same paper raised the question of whether it is possible to obtain nontrivial approximation algorithms for complete Min-k-CSPs with k ≥ 3. In this work, we make progress in this direction and show a quasi-polynomial time polylog(n)-approximation to Min-NAE-3-SAT on complete instances, which asks to minimize the number of 3-clauses where all the three literals equal the same bit. To the best of our knowledge, this is the first known example of a CSP whose decision version is NP-Hard in general (and dense) instances while admitting a polylog(n)-approximation in complete instances. Our algorithm presents a new iterative framework for rounding a solution from the Sherali-Adams hierarchy, where each iteration interleaves the two well-known rounding tools: the conditioning procedure, in order to "almost fix" many variables, and the thresholding procedure, in order to "completely fix" them. Finally, we improve the running time of the decision algorithms of Anand, Lee, and Sharma and show a simple algorithm that decides any complete Boolean-alphabet k-CSP in polynomial time.

Cite as

Aditya Anand, Euiwoong Lee, Davide Mazzali, and Amatya Sharma. Min-CSPs on Complete Instances II: Polylogarithmic Approximation for Min-NAE-3-SAT. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.APPROX/RANDOM.2025.5,
  author =	{Anand, Aditya and Lee, Euiwoong and Mazzali, Davide and Sharma, Amatya},
  title =	{{Min-CSPs on Complete Instances II: Polylogarithmic Approximation for Min-NAE-3-SAT}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.5},
  URN =		{urn:nbn:de:0030-drops-243712},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.5},
  annote =	{Keywords: Constraint Satisfiability Problems, Approximation Algorithms, Sherali Adams}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail