Search Results

Documents authored by Morgan, Carroll


Document
Invited Talk
How to Develop an Intuition for Risk... and Other Invisible Phenomena (Invited Talk)

Authors: Natasha Fernandes, Annabelle McIver, and Carroll Morgan

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
The study of quantitative risk in security systems is often based around complex and subtle mathematical ideas involving probabilities. The notations for these ideas can pose a communication barrier between collaborating researchers even when those researchers are working within a similar framework. This paper describes the use of geometrical representation and reasoning as a way to share ideas using the minimum of notation so as to build intuition about what kinds of properties might or might not be true. We describe a faithful geometrical setting for the channel model of quantitative information flow (QIF) and demonstrate how it can facilitate "proofs without words" for problems in the QIF setting.

Cite as

Natasha Fernandes, Annabelle McIver, and Carroll Morgan. How to Develop an Intuition for Risk... and Other Invisible Phenomena (Invited Talk). In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fernandes_et_al:LIPIcs.CSL.2022.2,
  author =	{Fernandes, Natasha and McIver, Annabelle and Morgan, Carroll},
  title =	{{How to Develop an Intuition for Risk... and Other Invisible Phenomena}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.2},
  URN =		{urn:nbn:de:0030-drops-157227},
  doi =		{10.4230/LIPIcs.CSL.2022.2},
  annote =	{Keywords: Geometry, Quantitative Information Flow, Proof, Explainability, Privacy}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail