Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)
Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich. One-Way Functions and a Conditional Variant of MKTP. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{allender_et_al:LIPIcs.FSTTCS.2021.7, author = {Allender, Eric and Cheraghchi, Mahdi and Myrisiotis, Dimitrios and Tirumala, Harsha and Volkovich, Ilya}, title = {{One-Way Functions and a Conditional Variant of MKTP}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {7:1--7:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.7}, URN = {urn:nbn:de:0030-drops-155181}, doi = {10.4230/LIPIcs.FSTTCS.2021.7}, annote = {Keywords: Kolmogorov complexity, KT Complexity, Minimum KT-complexity Problem, MKTP, Conditional KT Complexity, Minimum Conditional KT-complexity Problem, McKTP, one-way functions, OWFs, average-case hardness, pseudorandom generators, PRGs, pseudorandom functions, PRFs, distinguishers, learning algorithms, NP-completeness, reductions} }
Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)
Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, and Yuichi Yoshida. One-Tape Turing Machine and Branching Program Lower Bounds for MCSP. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{cheraghchi_et_al:LIPIcs.STACS.2021.23, author = {Cheraghchi, Mahdi and Hirahara, Shuichi and Myrisiotis, Dimitrios and Yoshida, Yuichi}, title = {{One-Tape Turing Machine and Branching Program Lower Bounds for MCSP}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {23:1--23:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.23}, URN = {urn:nbn:de:0030-drops-136681}, doi = {10.4230/LIPIcs.STACS.2021.23}, annote = {Keywords: Minimum Circuit Size Problem, Kolmogorov Complexity, One-Tape Turing Machines, Branching Programs, Lower Bounds, Pseudorandom Generators, Hitting Set Generators} }
Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)
Valentine Kabanets, Sajin Koroth, Zhenjian Lu, Dimitrios Myrisiotis, and Igor C. Oliveira. Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 15:1-15:41, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{kabanets_et_al:LIPIcs.CCC.2020.15, author = {Kabanets, Valentine and Koroth, Sajin and Lu, Zhenjian and Myrisiotis, Dimitrios and Oliveira, Igor C.}, title = {{Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {15:1--15:41}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.15}, URN = {urn:nbn:de:0030-drops-125673}, doi = {10.4230/LIPIcs.CCC.2020.15}, annote = {Keywords: de Morgan formulas, circuit lower bounds, satisfiability (SAT), pseudorandom generators (PRGs), learning, communication complexity, polynomial threshold functions (PTFs), parities} }
Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit Lower Bounds for MCSP from Local Pseudorandom Generators. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{cheraghchi_et_al:LIPIcs.ICALP.2019.39, author = {Cheraghchi, Mahdi and Kabanets, Valentine and Lu, Zhenjian and Myrisiotis, Dimitrios}, title = {{Circuit Lower Bounds for MCSP from Local Pseudorandom Generators}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {39:1--39:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.39}, URN = {urn:nbn:de:0030-drops-106156}, doi = {10.4230/LIPIcs.ICALP.2019.39}, annote = {Keywords: minimum circuit size problem (MCSP), circuit lower bounds, pseudorandom generators (PRGs), local PRGs, de Morgan formulas, branching programs, constant depth circuits} }
Feedback for Dagstuhl Publishing