Search Results

Documents authored by Noy, Marc


Document
Logic and Random Discrete Structures (Dagstuhl Seminar 22061)

Authors: Erich Grädel, Phokion G. Kolaitis, Marc Noy, and Matthias Naaf

Published in: Dagstuhl Reports, Volume 12, Issue 2 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22061 "Logic and Random Discrete Structures". The main topic of this seminar has been the analysis of large random discrete structures, such as trees, graphs, or permutations, from the perspective of mathematical logic. It has brought together both experts and junior researchers from a number of different areas where logic and random structures play a role, with the goal to establish new connections between such areas and to encourage interactions between foundational research and different application areas, including probabilistic databases.

Cite as

Erich Grädel, Phokion G. Kolaitis, Marc Noy, and Matthias Naaf. Logic and Random Discrete Structures (Dagstuhl Seminar 22061). In Dagstuhl Reports, Volume 12, Issue 2, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{gradel_et_al:DagRep.12.2.1,
  author =	{Gr\"{a}del, Erich and Kolaitis, Phokion G. and Noy, Marc and Naaf, Matthias},
  title =	{{Logic and Random Discrete Structures (Dagstuhl Seminar 22061)}},
  pages =	{1--16},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{2},
  editor =	{Gr\"{a}del, Erich and Kolaitis, Phokion G. and Noy, Marc and Naaf, Matthias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.2.1},
  URN =		{urn:nbn:de:0030-drops-169295},
  doi =		{10.4230/DagRep.12.2.1},
  annote =	{Keywords: combinatorics, complexity theory, logic, random structures, probabilistic databases}
}
Document
Cut Vertices in Random Planar Maps

Authors: Michael Drmota, Marc Noy, and Benedikt Stufler

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
The main goal of this paper is to determine the asymptotic behavior of the number X_n of cut-vertices in random planar maps with n edges. It is shown that X_n/n → c in probability (for some explicit c>0). For so-called subcritial subclasses of planar maps like outerplanar maps we obtain a central limit theorem, too.

Cite as

Michael Drmota, Marc Noy, and Benedikt Stufler. Cut Vertices in Random Planar Maps. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{drmota_et_al:LIPIcs.AofA.2020.10,
  author =	{Drmota, Michael and Noy, Marc and Stufler, Benedikt},
  title =	{{Cut Vertices in Random Planar Maps}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.10},
  URN =		{urn:nbn:de:0030-drops-120403},
  doi =		{10.4230/LIPIcs.AofA.2020.10},
  annote =	{Keywords: random planar maps, cut vertices, generating functions, local graph limits}
}
Document
On Zero-One and Convergence Laws for Graphs Embeddable on a Fixed Surface

Authors: Albert Atserias, Stephan Kreutzer, and Marc Noy

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We show that for no surface except for the plane does monadic second-order logic (MSO) have a zero-one-law - and not even a convergence law - on the class of (connected) graphs embeddable on the surface. In addition we show that every rational in [0,1] is the limiting probability of some MSO formula. This strongly refutes a conjecture by Heinig et al. (2014) who proved a convergence law for planar graphs, and a zero-one law for connected planar graphs, and also identified the so-called gaps of [0,1]: the subintervals that are not limiting probabilities of any MSO formula. The proof relies on a combination of methods from structural graph theory, especially large face-width embeddings of graphs on surfaces, analytic combinatorics, and finite model theory, and several parts of the proof may be of independent interest. In particular, we identify precisely the properties that make the zero-one law work on planar graphs but fail for every other surface.

Cite as

Albert Atserias, Stephan Kreutzer, and Marc Noy. On Zero-One and Convergence Laws for Graphs Embeddable on a Fixed Surface. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 116:1-116:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{atserias_et_al:LIPIcs.ICALP.2018.116,
  author =	{Atserias, Albert and Kreutzer, Stephan and Noy, Marc},
  title =	{{On Zero-One and Convergence Laws for Graphs Embeddable on a Fixed Surface}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{116:1--116:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.116},
  URN =		{urn:nbn:de:0030-drops-91206},
  doi =		{10.4230/LIPIcs.ICALP.2018.116},
  annote =	{Keywords: topological graph theory, monadic second-order logic, random graphs, zero-one law, convergence law}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail