Search Results

Documents authored by Oliveras, Albert


Document
Speeding up Pseudo-Boolean Propagation

Authors: Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Unit propagation is known to be one of the most time-consuming procedures inside CDCL-based SAT solvers. Not surprisingly, it has been studied in depth and the two-watched-literal scheme, enhanced with implementation details boosting its performance, has emerged as the dominant method. In pseudo-Boolean solvers, the importance of unit propagation is similar, but no dominant method exists: counter propagation and watched-based extensions are efficient for different types of constraints, which has opened the door to hybrid methods. However, probably due to the higher complexity of implementing pseudo-Boolean solvers, research efforts have not focused much on concrete implementation details for unit propagation but rather on higher-level aspects of other procedures, such as conflict analysis. In this paper, we present (i) a novel methodology to precisely assess the performance of propagation mechanisms, (ii) an evaluation of implementation variants of the propagation methods present in {RoundingSat} and (iii) a detailed analysis showing that hybrid methods outperform the ones based on a single technique. Our final contribution is to show that a carefully implemented hybrid propagation method is considerably faster than the preferred propagation mechanism in {RoundingSat}, and that this improvement leads to a better overall performance of the solver.

Cite as

Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Rui Zhao. Speeding up Pseudo-Boolean Propagation. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{nieuwenhuis_et_al:LIPIcs.SAT.2024.22,
  author =	{Nieuwenhuis, Robert and Oliveras, Albert and Rodr{\'\i}guez-Carbonell, Enric and Zhao, Rui},
  title =	{{Speeding up Pseudo-Boolean Propagation}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.22},
  URN =		{urn:nbn:de:0030-drops-205449},
  doi =		{10.4230/LIPIcs.SAT.2024.22},
  annote =	{Keywords: SAT, Pseudo-Boolean Solving, Implementation-level Details}
}
Document
Learning Shorter Redundant Clauses in SDCL Using MaxSAT

Authors: Albert Oliveras, Chunxiao Li, Darryl Wu, Jonathan Chung, and Vijay Ganesh

Published in: LIPIcs, Volume 271, 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)


Abstract
In this paper we present the design and implementation of a Satisfaction-Driven Clause Learning (SDCL) SAT solver, MapleSDCL, which uses a MaxSAT-based technique that enables it to learn shorter, and hence better, redundant clauses. We also perform a thorough empirical evaluation of our method and show that our SDCL solver solves Mutilated Chess Board (MCB) problems significantly faster than CDCL solvers, without requiring any alteration to the branching heuristic used by the underlying CDCL SAT solver.

Cite as

Albert Oliveras, Chunxiao Li, Darryl Wu, Jonathan Chung, and Vijay Ganesh. Learning Shorter Redundant Clauses in SDCL Using MaxSAT. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 271, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{oliveras_et_al:LIPIcs.SAT.2023.18,
  author =	{Oliveras, Albert and Li, Chunxiao and Wu, Darryl and Chung, Jonathan and Ganesh, Vijay},
  title =	{{Learning Shorter Redundant Clauses in SDCL Using MaxSAT}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.18},
  URN =		{urn:nbn:de:0030-drops-184803},
  doi =		{10.4230/LIPIcs.SAT.2023.18},
  annote =	{Keywords: SAT, SDCL, MaxSAT}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail