Search Results

Documents authored by Parsaeian, Zahra


Document
Massively Parallel Ruling Set Made Deterministic

Authors: Jeff Giliberti and Zahra Parsaeian

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
We study the deterministic complexity of the 2-Ruling Set problem in the model of Massively Parallel Computation (MPC) with linear and strongly sublinear local memory. - Linear MPC: We present a constant-round deterministic algorithm for the 2-Ruling Set problem that matches the randomized round complexity recently settled by Cambus, Kuhn, Pai, and Uitto [DISC'23], and improves upon the deterministic O(log log n)-round algorithm by Pai and Pemmaraju [PODC'22]. Our main ingredient is a simpler analysis of CKPU’s algorithm based solely on bounded independence, which makes its efficient derandomization possible. - Sublinear MPC: We present a deterministic algorithm that computes a 2-Ruling Set in Õ(√{log n}) rounds deterministically. Notably, this is the first deterministic ruling set algorithm with sublogarithmic round complexity, improving on the O(log Δ + log log^* n)-round complexity that stems from the deterministic MIS algorithm of Czumaj, Davies, and Parter [TALG'21]. Our result is based on a simple and fast randomness-efficient construction that achieves the same sparsification as that of the randomized Õ(√{log n})-round LOCAL algorithm by Kothapalli and Pemmaraju [FSTTCS'12].

Cite as

Jeff Giliberti and Zahra Parsaeian. Massively Parallel Ruling Set Made Deterministic. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 29:1-29:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{giliberti_et_al:LIPIcs.DISC.2024.29,
  author =	{Giliberti, Jeff and Parsaeian, Zahra},
  title =	{{Massively Parallel Ruling Set Made Deterministic}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{29:1--29:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.29},
  URN =		{urn:nbn:de:0030-drops-212551},
  doi =		{10.4230/LIPIcs.DISC.2024.29},
  annote =	{Keywords: deterministic algorithms, distributed computing, massively parallel computation, graph algorithms, derandomization}
}
Document
Laminar Matroid Secretary: Greedy Strikes Back

Authors: Zhiyi Huang, Zahra Parsaeian, and Zixuan Zhu

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We show that a simple greedy algorithm is 4.75-competitive for the Laminar Matroid Secretary Problem, improving the 3√3 ≈ 5.196-competitive algorithm based on the forbidden sets technique (Soto, Turkieltaub, and Verdugo, 2018).

Cite as

Zhiyi Huang, Zahra Parsaeian, and Zixuan Zhu. Laminar Matroid Secretary: Greedy Strikes Back. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 73:1-73:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ESA.2024.73,
  author =	{Huang, Zhiyi and Parsaeian, Zahra and Zhu, Zixuan},
  title =	{{Laminar Matroid Secretary: Greedy Strikes Back}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{73:1--73:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.73},
  URN =		{urn:nbn:de:0030-drops-211443},
  doi =		{10.4230/LIPIcs.ESA.2024.73},
  annote =	{Keywords: Matroid Secretary, Greedy Algorithm, Laminar Matroid}
}
Document
Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs

Authors: Karl Bringmann, Sándor Kisfaludi‑Bak, Marvin Künnemann, André Nusser, and Zahra Parsaeian

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. A geometric intersection graph is a graph whose vertices correspond to some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance realized by a pair of vertices in the graph. Computing the diameter in near-quadratic time is possible in several classes of intersection graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially since in the related class of planar graphs the diameter can be computed in 𝒪̃(n^{5/3}) time [Cabello 2019, Gawrychowski et al. 2021]. In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time 𝒪(n^{2-δ}) for some δ > 0. In particular, there are no sub-quadratic algorithms already for fat objects in small dimensions: unit balls in ℝ³ or congruent equilateral triangles in ℝ². For unit segments and congruent equilateral triangles, we can even rule out strong sub-quadratic approximations already in ℝ². It seems that the hardness of approximation may also depend on dimensionality: for axis-parallel unit hypercubes in ℝ^{12}, distinguishing between diameter 2 and 3 needs quadratic time (ruling out (3/2-ε)- approximations), whereas for axis-parallel unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time. Note that many of our lower bounds match the best known algorithms up to sub-polynomial factors. Ultimately, this fine-grained perspective may enable us to determine for which shapes we can have efficient algorithms and approximation schemes for diameter computation.

Cite as

Karl Bringmann, Sándor Kisfaludi‑Bak, Marvin Künnemann, André Nusser, and Zahra Parsaeian. Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.SoCG.2022.21,
  author =	{Bringmann, Karl and Kisfaludi‑Bak, S\'{a}ndor and K\"{u}nnemann, Marvin and Nusser, Andr\'{e} and Parsaeian, Zahra},
  title =	{{Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.21},
  URN =		{urn:nbn:de:0030-drops-160294},
  doi =		{10.4230/LIPIcs.SoCG.2022.21},
  annote =	{Keywords: Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal Vectors, Hyperclique Detection}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail