Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)
Elena Loli Piccolomini, Stefano Gandolfi, Luca Poluzzi, Luca Tavasci, Pasquale Cascarano, and Andrea Pascucci. Recurrent Neural Networks Applied to GNSS Time Series for Denoising and Prediction. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 10:1-10:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{lolipiccolomini_et_al:LIPIcs.TIME.2019.10, author = {Loli Piccolomini, Elena and Gandolfi, Stefano and Poluzzi, Luca and Tavasci, Luca and Cascarano, Pasquale and Pascucci, Andrea}, title = {{Recurrent Neural Networks Applied to GNSS Time Series for Denoising and Prediction}}, booktitle = {26th International Symposium on Temporal Representation and Reasoning (TIME 2019)}, pages = {10:1--10:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-127-6}, ISSN = {1868-8969}, year = {2019}, volume = {147}, editor = {Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.10}, URN = {urn:nbn:de:0030-drops-113687}, doi = {10.4230/LIPIcs.TIME.2019.10}, annote = {Keywords: Deep Neural Networks, Recurrent Neural Networks, Time Series Denoising, Time Series Prediction} }
Feedback for Dagstuhl Publishing