Published in: LIPIcs, Volume 247, 29th International Symposium on Temporal Representation and Reasoning (TIME 2022)
Gianluca Apriceno, Andrea Passerini, and Luciano Serafini. A Neuro-Symbolic Approach for Real-World Event Recognition from Weak Supervision. In 29th International Symposium on Temporal Representation and Reasoning (TIME 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 247, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{apriceno_et_al:LIPIcs.TIME.2022.12,
  author =	{Apriceno, Gianluca and Passerini, Andrea and Serafini, Luciano},
  title =	{{A Neuro-Symbolic Approach for Real-World Event Recognition from Weak Supervision}},
  booktitle =	{29th International Symposium on Temporal Representation and Reasoning (TIME 2022)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-262-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{247},
  editor =	{Artikis, Alexander and Posenato, Roberto and Tonetta, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2022.12},
  URN =		{urn:nbn:de:0030-drops-172594},
  doi =		{10.4230/LIPIcs.TIME.2022.12},
  annote =	{Keywords: structured events, temporal event detection, neuro-symbolic integration}
}
                
            Published in: LIPIcs, Volume 206, 28th International Symposium on Temporal Representation and Reasoning (TIME 2021)
Gianluca Apriceno, Andrea Passerini, and Luciano Serafini. A Neuro-Symbolic Approach to Structured Event Recognition. In 28th International Symposium on Temporal Representation and Reasoning (TIME 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 206, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{apriceno_et_al:LIPIcs.TIME.2021.11,
  author =	{Apriceno, Gianluca and Passerini, Andrea and Serafini, Luciano},
  title =	{{A Neuro-Symbolic Approach to Structured Event Recognition}},
  booktitle =	{28th International Symposium on Temporal Representation and Reasoning (TIME 2021)},
  pages =	{11:1--11:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-206-8},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{206},
  editor =	{Combi, Carlo and Eder, Johann and Reynolds, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2021.11},
  URN =		{urn:nbn:de:0030-drops-147876},
  doi =		{10.4230/LIPIcs.TIME.2021.11},
  annote =	{Keywords: Event recognition, learning and reasoning, neuro-symbolic integration}
}
                
            Published in: Dagstuhl Seminar Proceedings, Volume 5051, Probabilistic, Logical and Relational Learning - Towards a Synthesis (2006)
Andrea Passerini, Paolo Frasconi, and Luc De Raedt. Kernels on Prolog Proof Trees:Statistical Learning in the ILP Setting. In Probabilistic, Logical and Relational Learning - Towards a Synthesis. Dagstuhl Seminar Proceedings, Volume 5051, pp. 1-20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)
@InProceedings{passerini_et_al:DagSemProc.05051.8,
  author =	{Passerini, Andrea and Frasconi, Paolo and De Raedt, Luc},
  title =	{{Kernels on Prolog Proof Trees:Statistical Learning in the ILP Setting}},
  booktitle =	{Probabilistic, Logical and Relational Learning - Towards a Synthesis},
  pages =	{1--20},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5051},
  editor =	{Luc De Raedt and Thomas Dietterich and Lise Getoor and Stephen H. Muggleton},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05051.8},
  URN =		{urn:nbn:de:0030-drops-4171},
  doi =		{10.4230/DagSemProc.05051.8},
  annote =	{Keywords: Proof Trees, Logic Kernels, Learning from Traces}
}