Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
Huck Bennett and Chris Peikert. Hardness of the (Approximate) Shortest Vector Problem: A Simple Proof via Reed-Solomon Codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{bennett_et_al:LIPIcs.APPROX/RANDOM.2023.37, author = {Bennett, Huck and Peikert, Chris}, title = {{Hardness of the (Approximate) Shortest Vector Problem: A Simple Proof via Reed-Solomon Codes}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {37:1--37:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.37}, URN = {urn:nbn:de:0030-drops-188622}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.37}, annote = {Keywords: Lattices, Shortest Vector Problem, Reed-Solomon codes, NP-hardness, derandomization} }
Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Huck Bennett, Chris Peikert, and Yi Tang. Improved Hardness of BDD and SVP Under Gap-(S)ETH. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 19:1-19:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bennett_et_al:LIPIcs.ITCS.2022.19, author = {Bennett, Huck and Peikert, Chris and Tang, Yi}, title = {{Improved Hardness of BDD and SVP Under Gap-(S)ETH}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {19:1--19:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.19}, URN = {urn:nbn:de:0030-drops-156151}, doi = {10.4230/LIPIcs.ITCS.2022.19}, annote = {Keywords: lattices, lattice-based cryptography, fine-grained complexity, Bounded Distance Decoding, Shortest Vector Problem} }
Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)
Huck Bennett and Chris Peikert. Hardness of Bounded Distance Decoding on Lattices in 𝓁_p Norms. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{bennett_et_al:LIPIcs.CCC.2020.36, author = {Bennett, Huck and Peikert, Chris}, title = {{Hardness of Bounded Distance Decoding on Lattices in 𝓁\underlinep Norms}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {36:1--36:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.36}, URN = {urn:nbn:de:0030-drops-125881}, doi = {10.4230/LIPIcs.CCC.2020.36}, annote = {Keywords: Lattices, Bounded Distance Decoding, NP-hardness, Fine-Grained Complexity} }
Published in: Dagstuhl Seminar Proceedings, Volume 8491, Theoretical Foundations of Practical Information Security (2009)
Chris Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem. In Theoretical Foundations of Practical Information Security. Dagstuhl Seminar Proceedings, Volume 8491, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)
@InProceedings{peikert:DagSemProc.08491.4, author = {Peikert, Chris}, title = {{Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem}}, booktitle = {Theoretical Foundations of Practical Information Security}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2009}, volume = {8491}, editor = {Ran Canetti and Shafi Goldwasser and G\"{u}nter M\"{u}ller and Rainer Steinwandt}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08491.4}, URN = {urn:nbn:de:0030-drops-18922}, doi = {10.4230/DagSemProc.08491.4}, annote = {Keywords: Lattice-based cryptography, learning with errors, quantum computation} }
Published in: LIPIcs, Volume 3, 26th International Symposium on Theoretical Aspects of Computer Science (2009)
Joel Alwen and Chris Peikert. Generating Shorter Bases for Hard Random Lattices. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 75-86, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)
@InProceedings{alwen_et_al:LIPIcs.STACS.2009.1832, author = {Alwen, Joel and Peikert, Chris}, title = {{Generating Shorter Bases for Hard Random Lattices}}, booktitle = {26th International Symposium on Theoretical Aspects of Computer Science}, pages = {75--86}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-09-5}, ISSN = {1868-8969}, year = {2009}, volume = {3}, editor = {Albers, Susanne and Marion, Jean-Yves}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1832}, URN = {urn:nbn:de:0030-drops-18327}, doi = {10.4230/LIPIcs.STACS.2009.1832}, annote = {Keywords: Lattices, Random, Short basis, Average-case hardness, Hermite normal form, Cryptography} }
Feedback for Dagstuhl Publishing