Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Pierre Aboulker, Édouard Bonnet, Timothé Picavet, and Nicolas Trotignon. Induced Disjoint Paths Without an Induced Minor. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{aboulker_et_al:LIPIcs.ICALP.2025.4, author = {Aboulker, Pierre and Bonnet, \'{E}douard and Picavet, Timoth\'{e} and Trotignon, Nicolas}, title = {{Induced Disjoint Paths Without an Induced Minor}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {4:1--4:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.4}, URN = {urn:nbn:de:0030-drops-233813}, doi = {10.4230/LIPIcs.ICALP.2025.4}, annote = {Keywords: Induced Disjoint Paths, string graphs, induced subdivisions, induced minors} }
Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)
Mathieu Mari, Timothé Picavet, and Michał Pilipczuk. A Parameterized Approximation Scheme for the Geometric Knapsack Problem with Wide Items. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{mari_et_al:LIPIcs.IPEC.2023.33, author = {Mari, Mathieu and Picavet, Timoth\'{e} and Pilipczuk, Micha{\l}}, title = {{A Parameterized Approximation Scheme for the Geometric Knapsack Problem with Wide Items}}, booktitle = {18th International Symposium on Parameterized and Exact Computation (IPEC 2023)}, pages = {33:1--33:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-305-8}, ISSN = {1868-8969}, year = {2023}, volume = {285}, editor = {Misra, Neeldhara and Wahlstr\"{o}m, Magnus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.33}, URN = {urn:nbn:de:0030-drops-194529}, doi = {10.4230/LIPIcs.IPEC.2023.33}, annote = {Keywords: Parameterized complexity, Approximation scheme, Geometric knapsack, Color coding, Dynamic programming, Computational geometry} }
Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)
Sameep Dahal, Francesco d'Amore, Henrik Lievonen, Timothé Picavet, and Jukka Suomela. Brief Announcement: Distributed Derandomization Revisited. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 40:1-40:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{dahal_et_al:LIPIcs.DISC.2023.40, author = {Dahal, Sameep and d'Amore, Francesco and Lievonen, Henrik and Picavet, Timoth\'{e} and Suomela, Jukka}, title = {{Brief Announcement: Distributed Derandomization Revisited}}, booktitle = {37th International Symposium on Distributed Computing (DISC 2023)}, pages = {40:1--40:5}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-301-0}, ISSN = {1868-8969}, year = {2023}, volume = {281}, editor = {Oshman, Rotem}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.40}, URN = {urn:nbn:de:0030-drops-191660}, doi = {10.4230/LIPIcs.DISC.2023.40}, annote = {Keywords: Distributed algorithm, Derandomization, LOCAL model} }