Document

**Published in:** LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)

We study deterministic games of infinite duration played on graphs and focus on the strategy complexity of quantitative objectives. Such games are known to admit optimal memoryless strategies over finite graphs, but require infinite-memory strategies in general over infinite graphs.
We provide new lower and upper bounds for the strategy complexity of mean-payoff and total-payoff objectives over infinite graphs, focusing on whether step-counter strategies (sometimes called Markov strategies) suffice to implement winning strategies. In particular, we show that over finitely branching arenas, three variants of limsup mean-payoff and total-payoff objectives admit winning strategies that are based either on a step counter or on a step counter and an additional bit of memory. Conversely, we show that for certain liminf total-payoff objectives, strategies resorting to a step counter and finite memory are not sufficient. For step-counter strategies, this settles the case of all classical quantitative objectives up to the second level of the Borel hierarchy.

Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove. The Power of Counting Steps in Quantitative Games. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.CONCUR.2024.13, author = {Bose, Sougata and Ibsen-Jensen, Rasmus and Purser, David and Totzke, Patrick and Vandenhove, Pierre}, title = {{The Power of Counting Steps in Quantitative Games}}, booktitle = {35th International Conference on Concurrency Theory (CONCUR 2024)}, pages = {13:1--13:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-339-3}, ISSN = {1868-8969}, year = {2024}, volume = {311}, editor = {Majumdar, Rupak and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.13}, URN = {urn:nbn:de:0030-drops-207852}, doi = {10.4230/LIPIcs.CONCUR.2024.13}, annote = {Keywords: Games on graphs, Markov strategies, quantitative objectives, infinite-state systems} }

Document

**Published in:** LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)

We consider history-determinism, a restricted form of non-determinism, for Vector Addition Systems with States (VASS) when used as acceptors to recognise languages of finite words. History-determinism requires that the non-deterministic choices can be resolved on-the-fly; based on the past and without jeopardising acceptance of any possible continuation of the input word.
Our results show that the history-deterministic (HD) VASS sit strictly between deterministic and non-deterministic VASS regardless of the number of counters. We compare the relative expressiveness of HD systems, and closure-properties of the induced language classes, with coverability and reachability semantics, and with and without ε-labelled transitions.
Whereas in dimension 1, inclusion and regularity remain decidable, from dimension two onwards, HD-VASS with suitable resolver strategies, are essentially able to simulate 2-counter Minsky machines, leading to several undecidability results: It is undecidable whether a VASS is history-deterministic, or if a language equivalent history-deterministic VASS exists. Checking language inclusion between history-deterministic 2-VASS is also undecidable.

Sougata Bose, David Purser, and Patrick Totzke. History-Deterministic Vector Addition Systems. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.CONCUR.2023.18, author = {Bose, Sougata and Purser, David and Totzke, Patrick}, title = {{History-Deterministic Vector Addition Systems}}, booktitle = {34th International Conference on Concurrency Theory (CONCUR 2023)}, pages = {18:1--18:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-299-0}, ISSN = {1868-8969}, year = {2023}, volume = {279}, editor = {P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.18}, URN = {urn:nbn:de:0030-drops-190120}, doi = {10.4230/LIPIcs.CONCUR.2023.18}, annote = {Keywords: Vector Addition Systems, History-determinism, Good-for Games} }

Document

**Published in:** LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)

We consider the model-checking problem for parametric probabilistic dynamical systems, formalised as Markov chains with parametric transition functions, analysed under the distribution-transformer semantics (in which a Markov chain induces a sequence of distributions over states).
We examine the problem of synthesising the set of parameter valuations of a parametric Markov chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular property.
Our main result establishes that in all non-degenerate instances, the feasible set of parameters is (up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2022.10, author = {Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James}, title = {{Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications}}, booktitle = {33rd International Conference on Concurrency Theory (CONCUR 2022)}, pages = {10:1--10:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-246-4}, ISSN = {1868-8969}, year = {2022}, volume = {243}, editor = {Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10}, URN = {urn:nbn:de:0030-drops-170732}, doi = {10.4230/LIPIcs.CONCUR.2022.10}, annote = {Keywords: Model checking, parametric Markov chains, distribution transformer semantics} }

Document

**Published in:** LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear recurrence sequence is the union of a finite set and finitely many arithmetic progressions. The corresponding computational question, the Skolem Problem, asks to determine whether a given linear recurrence sequence has a zero term. Although the Skolem-Mahler-Lech Theorem is almost 90 years old, decidability of the Skolem Problem remains open. The main contribution of this paper is an algorithm to solve the Skolem Problem for simple linear recurrence sequences (those with simple characteristic roots). Whenever the algorithm terminates, it produces a stand-alone certificate that its output is correct - a set of zeros together with a collection of witnesses that no further zeros exist. We give a proof that the algorithm always terminates assuming two classical number-theoretic conjectures: the Skolem Conjecture (also known as the Exponential Local-Global Principle) and the p-adic Schanuel Conjecture. Preliminary experiments with an implementation of this algorithm within the tool Skolem point to the practical applicability of this method.

Yuri Bilu, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James Worrell. Skolem Meets Schanuel. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bilu_et_al:LIPIcs.MFCS.2022.20, author = {Bilu, Yuri and Luca, Florian and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Purser, David and Worrell, James}, title = {{Skolem Meets Schanuel}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {20:1--20:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.20}, URN = {urn:nbn:de:0030-drops-168180}, doi = {10.4230/LIPIcs.MFCS.2022.20}, annote = {Keywords: Skolem Problem, Skolem Conjecture, Exponential Local-Global Principle, p-adic Schanuel Conjecture} }

Document

**Published in:** LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)

We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters.
More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v.
We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The Orbit Problem for Parametric Linear Dynamical Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2021.28, author = {Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Luca, Florian and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James}, title = {{The Orbit Problem for Parametric Linear Dynamical Systems}}, booktitle = {32nd International Conference on Concurrency Theory (CONCUR 2021)}, pages = {28:1--28:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-203-7}, ISSN = {1868-8969}, year = {2021}, volume = {203}, editor = {Haddad, Serge and Varacca, Daniele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.28}, URN = {urn:nbn:de:0030-drops-144053}, doi = {10.4230/LIPIcs.CONCUR.2021.28}, annote = {Keywords: Orbit problem, parametric, linear dynamical systems} }

Document

**Published in:** LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)

We consider reachability in dynamical systems with discrete linear updates, but with fixed digital precision, i.e., such that values of the system are rounded at each step. Given a matrix M ∈ ℚ^{d × d}, an initial vector x ∈ ℚ^{d}, a granularity g ∈ ℚ_+ and a rounding operation [⋅] projecting a vector of ℚ^{d} onto another vector whose every entry is a multiple of g, we are interested in the behaviour of the orbit 𝒪 = ⟨[x], [M[x]],[M[M[x]]],… ⟩, i.e., the trajectory of a linear dynamical system in which the state is rounded after each step. For arbitrary rounding functions with bounded effect, we show that the complexity of deciding point-to-point reachability - whether a given target y ∈ ℚ^{d} belongs to 𝒪 - is PSPACE-complete for hyperbolic systems (when no eigenvalue of M has modulus one). We also establish decidability without any restrictions on eigenvalues for several natural classes of rounding functions.

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland. Reachability in Dynamical Systems with Rounding. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.FSTTCS.2020.36, author = {Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Pouly, Amaury and Purser, David and Whiteland, Markus A.}, title = {{Reachability in Dynamical Systems with Rounding}}, booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)}, pages = {36:1--36:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-174-0}, ISSN = {1868-8969}, year = {2020}, volume = {182}, editor = {Saxena, Nitin and Simon, Sunil}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.36}, URN = {urn:nbn:de:0030-drops-132778}, doi = {10.4230/LIPIcs.FSTTCS.2020.36}, annote = {Keywords: dynamical systems, rounding, reachability} }

Document

**Published in:** LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)

Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second.
We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable.
Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel’s conjecture, when the language is bounded (i.e., a subset of w_1^* … w_m^* for some finite words w_1,… ,w_m).
On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to ε-differential privacy, for which the optimal constant of the big-O notation is exactly exp(ε).

Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. The Big-O Problem for Labelled Markov Chains and Weighted Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 41:1-41:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2020.41, author = {Chistikov, Dmitry and Kiefer, Stefan and Murawski, Andrzej S. and Purser, David}, title = {{The Big-O Problem for Labelled Markov Chains and Weighted Automata}}, booktitle = {31st International Conference on Concurrency Theory (CONCUR 2020)}, pages = {41:1--41:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-160-3}, ISSN = {1868-8969}, year = {2020}, volume = {171}, editor = {Konnov, Igor and Kov\'{a}cs, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.41}, URN = {urn:nbn:de:0030-drops-128534}, doi = {10.4230/LIPIcs.CONCUR.2020.41}, annote = {Keywords: weighted automata, labelled Markov chains, probabilistic systems} }

Document

Track B: Automata, Logic, Semantics, and Theory of Programming

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

We study the problem of verifying differential privacy for loop-free programs with probabilistic choice. Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal model to answer two different questions: first, deciding whether a program satisfies a prescribed level of privacy; second, approximating the privacy parameters a program realizes. We show that the problem of deciding whether a program satisfies ε-differential privacy is coNP^#P-complete. In fact, this is the case when either the input domain or the output range of the program is large. Further, we show that deciding whether a program is (ε,δ)-differentially private is coNP^#P-hard, and in coNP^#P for small output domains, but always in coNP^{#P^#P}. Finally, we show that the problem of approximating the level of differential privacy is both NP-hard and coNP-hard. These results complement previous results by Murtagh and Vadhan [Jack Murtagh and Salil P. Vadhan, 2016] showing that deciding the optimal composition of differentially private components is #P-complete, and that approximating the optimal composition of differentially private components is in P.

Marco Gaboardi, Kobbi Nissim, and David Purser. The Complexity of Verifying Loop-Free Programs as Differentially Private. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 129:1-129:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{gaboardi_et_al:LIPIcs.ICALP.2020.129, author = {Gaboardi, Marco and Nissim, Kobbi and Purser, David}, title = {{The Complexity of Verifying Loop-Free Programs as Differentially Private}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {129:1--129:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.129}, URN = {urn:nbn:de:0030-drops-125362}, doi = {10.4230/LIPIcs.ICALP.2020.129}, annote = {Keywords: differential privacy, program verification, probabilistic programs} }

Document

**Published in:** LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)

Differential privacy is a widely studied notion of privacy for various models of computation, based on measuring differences between probability distributions. We consider (epsilon,delta)-differential privacy in the setting of labelled Markov chains. For a given epsilon, the parameter delta can be captured by a variant of the total variation distance, which we call lv_{alpha} (where alpha = e^{epsilon}).
First we study lv_{alpha} directly, showing that it cannot be computed exactly. However, the associated approximation problem turns out to be in PSPACE and #P-hard. Next we introduce a new bisimilarity distance for bounding lv_{alpha} from above, which provides a tighter bound than previously known distances while remaining computable with the same complexity (polynomial time with an NP oracle). We also propose an alternative bound that can be computed in polynomial time. Finally, we illustrate the distances on case studies.

Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Asymmetric Distances for Approximate Differential Privacy. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2019.10, author = {Chistikov, Dmitry and Murawski, Andrzej S. and Purser, David}, title = {{Asymmetric Distances for Approximate Differential Privacy}}, booktitle = {30th International Conference on Concurrency Theory (CONCUR 2019)}, pages = {10:1--10:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-121-4}, ISSN = {1868-8969}, year = {2019}, volume = {140}, editor = {Fokkink, Wan and van Glabbeek, Rob}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.10}, URN = {urn:nbn:de:0030-drops-109121}, doi = {10.4230/LIPIcs.CONCUR.2019.10}, annote = {Keywords: Bisimilarity distances, Differential privacy, Labelled Markov chains} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail