Search Results

Documents authored by Qi, Benjamin


Document
New Approximation Algorithms for Touring Regions

Authors: Benjamin Qi and Richard Qi

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
We analyze the touring regions problem: find a (1+ε)-approximate Euclidean shortest path in d-dimensional space that starts at a given starting point, ends at a given ending point, and visits given regions R₁, R₂, R₃, … , R_n in that order. Our main result is an O (n/√ε log{1/ε} + 1/ε)-time algorithm for touring disjoint disks. We also give an O(min(n/ε, n²/√ε))-time algorithm for touring disjoint two-dimensional convex fat bodies. Both of these results naturally generalize to larger dimensions; we obtain O(n/{ε^{d-1}} log²1/ε + 1/ε^{2d-2}) and O(n/ε^{2d-2})-time algorithms for touring disjoint d-dimensional balls and convex fat bodies, respectively.

Cite as

Benjamin Qi and Richard Qi. New Approximation Algorithms for Touring Regions. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 54:1-54:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{qi_et_al:LIPIcs.SoCG.2023.54,
  author =	{Qi, Benjamin and Qi, Richard},
  title =	{{New Approximation Algorithms for Touring Regions}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{54:1--54:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.54},
  URN =		{urn:nbn:de:0030-drops-179047},
  doi =		{10.4230/LIPIcs.SoCG.2023.54},
  annote =	{Keywords: shortest paths, convex bodies, fat objects, disks}
}
Document
On Maximizing Sums of Non-Monotone Submodular and Linear Functions

Authors: Benjamin Qi

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We study the problem of Regularized Unconstrained Submodular Maximization (RegularizedUSM) as defined by [Bodek and Feldman '22]. In this problem, we are given query access to a non-negative submodular function f: 2^N → ℝ_{≥ 0} and a linear function 𝓁: 2^N → ℝ over the same ground set N, and the objective is to output a set T ⊆ N approximately maximizing the sum f(T)+𝓁(T). Specifically, an algorithm is said to provide an (α,β)-approximation for RegularizedUSM if it outputs a set T such that E[f(T)+𝓁(T)] ≥ max_{S ⊆ N}[α ⋅ f(S)+β⋅ 𝓁(S)]. We also study the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized Constrained Submodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied [Sviridenko et al. '17, Feldman '18, Harshaw et al. '19]. On the other hand, we are aware of only one prior work that studies RegularizedCSM with non-monotone f [Lu et al. '21], and that work constrains 𝓁 to be non-positive. In this work, we provide improved (α,β)-approximation algorithms for both {RegularizedUSM} and {RegularizedCSM} with non-monotone f. In particular, we are the first to provide nontrivial (α,β)-approximations for RegularizedCSM where the sign of 𝓁 is unconstrained, and the α we obtain for RegularizedUSM improves over [Bodek and Feldman '22] for all β ∈ (0,1). In addition to approximation algorithms, we provide improved inapproximability results for all of the aforementioned cases. In particular, we show that the α our algorithm obtains for {RegularizedCSM} with unconstrained 𝓁 is essentially tight for β ≥ e/(e+1). Using similar ideas, we are also able to show 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to [Oveis Gharan and Vondrak '10].

Cite as

Benjamin Qi. On Maximizing Sums of Non-Monotone Submodular and Linear Functions. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 41:1-41:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{qi:LIPIcs.ISAAC.2022.41,
  author =	{Qi, Benjamin},
  title =	{{On Maximizing Sums of Non-Monotone Submodular and Linear Functions}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.41},
  URN =		{urn:nbn:de:0030-drops-173263},
  doi =		{10.4230/LIPIcs.ISAAC.2022.41},
  annote =	{Keywords: submodular maximization, regularization, continuous greedy, inapproximability}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail